Part of the book series: Springer Theses ((Springer Theses))

  • 54 Accesses

Abstract

This chapter is dedicated to yield (or failure probability) estimation. First, the yield is introduced formally and an overview of existing approaches for yield estimation is provided. Then, we propose two new hybrid methods for efficient yield estimation. One of them is based on SC, the other one on GPR. The aim of these methods is to maintain the high estimation accuracy achieved with classic MC, while the computational effort is reduced by evaluating most of the sample points on surrogate models. The content and structure of this chapter follow our work in [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fuhrländer M, Georg N, Römer U, Schŏps S (2020) Yield optimization based on adaptive Newton-Monte Carlo and polynomial surrogates. Int J Uncertain Quantif 10(4):351–373. https://doi.org/10.1615/Int.J.UncertaintyQuantification.2020033344

    Article  MathSciNet  MATH  Google Scholar 

  2. Fuhrländer M, Schŏps S (2020) A blackbox yield estimation workflow with Gaussian process regression applied to the design of electromagnetic devices. J Math Ind 10(1):1–17

    MathSciNet  MATH  Google Scholar 

  3. Gräb HE (2007) Analog design centering and sizing. Springer (2007)

    Google Scholar 

  4. Huber M, Fuhrländer M, Schöps S (2023) Multi-objective yield optimization for electrical machines using Gaussian processes to learn faulty designs. IEEE Trans Ind Appl 59(2):1340–1350

    Article  Google Scholar 

  5. Choi CK, Yoo HH (2012) Uncertainty analysis of nonlinear systems employing the first-order reliability method. J Mech Sci Technol 26(1):39–44. https://doi.org/10.1007/s12206-011-1011-x

    Article  Google Scholar 

  6. Breitung K (1984) Asymptotic approximations for multinormal integrals. J Eng Mech 110(3):357–366

    Article  MATH  Google Scholar 

  7. Gallimard L (2019) Adaptive reduced basis strategy for rare-event simulations. Int J Numer Meth Eng 1:1–20. https://doi.org/10.1002/nme.6135

    Article  MathSciNet  Google Scholar 

  8. Au SK, Beck JL (2001) Estimation of small failure probabilities in high dimensions by subset simulation. Probab Eng Mech 16:263–277. https://doi.org/10.1016/S0266-8920(01)00019-4

    Article  Google Scholar 

  9. Bect J, Li L, Vazquez E (2017) Bayesian subset simulation. SIAM/ASA J Uncert Quantif 5(1):762–786. https://doi.org/10.1137/16m1078276

    Article  MathSciNet  MATH  Google Scholar 

  10. Kouassi A, Bourinet J, Lalléchère S, Bonnet P, Fogli M (2016) Reliability and sensitivity analysis of transmission lines in a probabilistic EMC context. IEEE Trans Electromagn Compat 58(2):561–572. https://doi.org/10.1109/TEMC.2016.2520205

    Article  Google Scholar 

  11. Hess MW, Benner P (2013) Fast evaluation of time-harmonic Maxwell’s equations using the reduced basis method. IEEE Trans Microw Theory Tech 61(6):2265–2274. https://doi.org/10.1109/TMTT.2013.2258167

    Article  Google Scholar 

  12. Bogoclu C, Roos D (2016). A benchmark of contemporary metamodeling algorithms. https://doi.org/10.7712/100016.2039.7645

    Article  Google Scholar 

  13. Rao CR, Toutenburg H (1999) Linear models: least squares and alternatives, 2 edn. Springer (1999)

    Google Scholar 

  14. Babuška I, Nobile F, Tempone R (2007) A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J Numer Anal 45(3):1005–1034. https://doi.org/10.1137/100786356

    Article  MathSciNet  MATH  Google Scholar 

  15. Li J, **u D (2010) Evaluation of failure probability via surrogate models. J Comput Phys 229(23):8966–8980. https://doi.org/10.1016/j.jcp.2010.08.022

    Article  MathSciNet  MATH  Google Scholar 

  16. Rasmussen CE, Williams CK (2006) Gaussian processes for machine learning. The MIT Press (2006)

    Google Scholar 

  17. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. The MIT Press

    Google Scholar 

  18. Tyagi A, Jonsson X, Beelen T, Schilders W (2018) Hybrid importance sampling Monte Carlo approach for yield estimation in circuit design. J Math Ind 8. https://doi.org/10.1186/s13362-018-0053-4

  19. **ao S, Oladyshkin S, Nowak W (2020) Reliability analysis with stratified importance sampling based on adaptive kriging. Reliab Eng Syst Safety 197 (2020)

    Google Scholar 

  20. Zhang J, Taflanidis AA (2019) Accelerating MCMC via kriging-based adaptive independent proposals and delayed rejection. Comput Methods Appl Mech Eng 355:1124–1147

    Article  MathSciNet  MATH  Google Scholar 

  21. Dassault Systèmes Deutschland GmbH: CST Studio Suite ® (2018). www.3ds.com

  22. Li J, Li J, **u D (2011) An efficient surrogate-based method for computing rare failure probability. J Comput Phys 230(24):8683–8697

    Article  MathSciNet  MATH  Google Scholar 

  23. Bect J, Ginsbourger D, Li L, Picheny V, Vazquez E (2012) Sequential design of computer experiments for the estimation of a probability of failure. Stat Comput 22(3):773–793

    Article  MathSciNet  MATH  Google Scholar 

  24. Dhulipala SL, Shields MD, Spencer BW, Bolisetti C, Slaughter AE, Laboure VM, Chakroborty P (2022) Active learning with multifidelity modeling for efficient rare event simulation. J Comput Phys

    Google Scholar 

  25. Butler T, Constantine P, Wildey T (2012) A posteriori error analysis of parameterized linear systems using spectral methods. SIAM J Matrix Anal Appl 33(1):195–209

    Article  MathSciNet  MATH  Google Scholar 

  26. Butler T, Dawson C, Wildey T (2013) Propagation of uncertainties using improved surrogate models. SIAM/ASA J Uncert Quantif 1(1):164–191

    Article  MathSciNet  MATH  Google Scholar 

  27. Butler T, Wildey T (2018) Utilizing adjoint-based error estimates for surrogate models to accurately predict probabilities of events. Int J Uncertain Quantif 8(2):143–159. https://doi.org/10.1615/Int.J.UncertaintyQuantification.2018020911

    Article  MathSciNet  MATH  Google Scholar 

  28. Kumar U, Crocker J, Chitra T, Saranga H (2006) Reliability and six sigma. EngineeringPro collection. Springer (2006). https://books.google.td/books?id=5_amcGFkhEIC

  29. Echard B, Gayton N, Lemaire M (2011) AK-MCS: an active learning reliability method combining kriging and Monte Carlo simulation. Struct Saf 33(2):145–154

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mona Fuhrländer .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fuhrländer, M. (2023). Yield Estimation. In: Design Methods for Reducing Failure Probabilities with Examples from Electrical Engineering. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-031-37019-9_4

Download citation

Publish with us

Policies and ethics

Navigation