Recent Computational Investigations of Leaflet Flutter in Thinner Biological Heart Valve Tissues

  • Chapter
  • First Online:
Frontiers in Computational Fluid-Structure Interaction and Flow Simulation
  • 400 Accesses

Abstract

Valvular heart disease has recently become an increasing public health concern due to the high prevalence of valve degeneration in aging populations. For high-risk patients, bioprosthetic valve replacement through percutaneous procedures offers a minimally invasive option for treatment. However, the use of thinner, more flexible biological tissues in these valves can induce leaflet flutter during the cardiac cycle, which may lead to cardiovascular dysfunction and reduced valve durability. While previous studies have observed this phenomenon, the mechanics underlying leaflet flutter are not well understood. This chapter reviews two of the author’s recent computational studies of heart valve leaflet flutter in bioprosthetic tissues. Both investigations utilized high-fidelity computational methods to model aortic valve implants and isolate leaflet flutter phenomena and the fundamental mechanics that contribute to leaflet flutter. The results indicate that thinner tissues induce flutter in heart valve leaflets, and reduced flexural stiffness is the primary factor that induces flutter in these biological tissues. These studies provide essential knowledge about leaflet flutter and offer significant insight into possible developments in the design of bioprosthetic heart valves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 179.34
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the St. Venant–Kirchhoff material, note that the coupling stiffness is zero, and the flexural stiffness includes only bending contributions.

  2. 2.

    Supplemental information figures, tables, and movies from Johnson et al. [33] are indicated by “S–.” The [33] citation for supplemental figures, tables, and movies is not included in the remainder of the chapter for brevity.

References

  1. Y. Alemu, D. Bluestein, Flow-induced platelet activation and damage accumulation in a mechanical heart valve: numerical studies. Artif. Organs 31(9), 677–688 (2007)

    Google Scholar 

  2. M. Argentina, L. Mahadevan, Fluid-flow-induced flutter of a flag. Proc. Natl. Acad. Sci. 102(6), 1829–1834 (2005)

    Google Scholar 

  3. M. Arsalan, T. Walther, Durability of prostheses for transcatheter aortic valve implantation. Nat. Rev. Cardiol. 13, 360–367 (2016)

    Google Scholar 

  4. A.H.F. Avelar, J.A. Canestri, C. Bim, M.G.M. Silva, R. Huebner, M. Pinotti, Quantification and analysis of leaflet flutter on biological prosthetic cardiac valves. Artif. Organs 41(9), 835–844 (2016)

    Google Scholar 

  5. A.H.F. Avelar, M.A.G.E. Stófel, J.A. Canestri, R. Huebner, Analytical approach on leaflet flutter on biological prosthetic heart valves. J. Braz. Soc. Mech. Sci. Eng. 39(12), 4849–4858 (2017)

    Google Scholar 

  6. Y. Bazilevs, V.M. Calo, J.A. Cottrel, T.J.R. Hughes, A. Reali, G. Scovazzi, Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput. Methods Appl. Mech. Eng. 197, 173–201 (2007)

    MathSciNet  Google Scholar 

  7. Y. Bazilevs, V.M. Calo, T.J.R. Hughes, Y. Zhang, Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput. Mech. 43, 3–37 (2008)

    MathSciNet  Google Scholar 

  8. Y. Bazilevs, M.C. Hsu, Y. Zhang, W. Wang, T. Kvamsdal, S. Hentschel, J. Isaksen, Computational fluid-structure interaction: methods and application to cerebral aneurysms. Biomech. Model. Mechanobiol. 9, 481–498 (2010)

    Google Scholar 

  9. D. Bluestein, Y.M. Li, I.B. Krukenkamp, Free emboli formation in the wake of bi-leaflet mechanical heart valves and the effects of implantation techniques. J. Biomech. 35(12), 1533–1540 (2002)

    Google Scholar 

  10. D. Bluestein, E. Rambod, M. Gharib, Vortex shedding as a mechanism for free emboli formation in mechanical heart valves. J. Biomech. Eng. 122(2), 125–134 (1999)

    Google Scholar 

  11. U. Bortolotti, A. Milano, A. Mazzucco, C. Valfré, E. Talenti, F. Guerra, G. Thiene, V. Gallucci, Results of reoperation for primary tissue failure of porcine bioprostheses. J. Thorac. Cardiovasc. Surg. 90, 564–569 (1985)

    Google Scholar 

  12. S. Bozkurt, G.L. Preston-Maher, R. Torii, G. Burriesci, Design, analysis and testing of a novel mitral valve for transcatheter implantation. Ann. Biomed. Eng. 45(8), 1852–1864 (2017)

    Google Scholar 

  13. N. Broom, The stress/strain and fatigue behaviour of glutaraldehyde preserved heart-valve tissue. J. Biomech. 10(11), 707–724 (1977)

    Google Scholar 

  14. A. Caballero, F. Sulejmani, C. Martin, T. Pham, W. Sun, Evaluation of transcatheter heart valve biomaterials: Biomechanical characterization of bovine and porcine pericardium. J. Mech. Behav. Biomed. Mater. 75, 486–494 (2017)

    Google Scholar 

  15. A.P. Condurache, T. Hahn, M. Scharfschwerdt, A. Mertins, T. Aach, Video-based measuring of quality parameters for tricuspid xenograft heart valve implants. IEEE Trans. Biomed. Eng. 56(12), 2868–2878 (2009)

    Google Scholar 

  16. M. Esmaily-Moghadam, Y. Bazilevs, T.Y. Hsia, I.E. Vignon-Clementel, A.L. Marsden, Modeling of Congenital Hearts Alliance (MOCHA), A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Comput. Mech. 48, 277–291 (2011)

    Google Scholar 

  17. S.H. Ewe, V. Delgado, A.C.T. Ng, M.L. Antoni, F. van der Kley, N.A. Marsan, A. de Weger, G. Tavilla, E.R. Holman, M.J. Schalij, J.J. Bax, Outcomes after transcatheter aortic valve implantation: Transfemoral versus transapical approach. Ann. Thorac. Surg. 92(4), 1244–1251 (2011)

    Google Scholar 

  18. S. Friedl, E. Herdt, S. König, M. Weyand, M. Kondruweit, T. Wittenberg, Determination of heart valve fluttering by analyzing pixel frequency, in Bildverarbeitung für die Medizin 2012 (Springer, Berlin, Heidelberg, 2012), pp. 87–91

    Google Scholar 

  19. I. Gallo, B. Ruiz, F. Nistal, C.M.G. Durán, Degeneration in porcine bioprosthetic cardiac valves: incidence of primary tissue failures among 938 bioprostheses at risk. Am. J. Cardiol. 53(8), 1061–1065 (1984)

    Google Scholar 

  20. M. Giersiepen, L.J. Wurzinger, R. Opitz, H. Reul, Estimation of shear stress-related blood damage in heart valve prostheses - in vitro comparison of 25 aortic valves. Int. J. Artif. Organs 13(5), 300–306 (1990)

    Google Scholar 

  21. B.E. Griffith, X. Luo, D.M. McQueen, C.S. Peskin, Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method. Int. J. Appl. Mech. 01, 137–177 (2009)

    Google Scholar 

  22. R. Guidoin, Y. Douville, M.A. Clavel, Z. Zhang, M. Nutley, P. Pibarot, G. Dionne, The marvel of percutaneous cardiovascular devices in the elderly. Ann. New York Acad. Sci. 1197(1), 188–199 (2010)

    Google Scholar 

  23. H. Hatoum, A. Yousefi, S. Lilly, P. Maureira, J. Crestanello, L.P. Dasi, An in vitro evaluation of turbulence after transcatheter aortic valve implantation. J. Thorac. Cardiovasc. Surg. 156(5), 1837–1848 (2018)

    Google Scholar 

  24. M. Hedayat, H. Asgharzadeh, I. Borazjani, Platelet activation of mechanical versus bioprosthetic heart valves during systole. J. Biomech. 56, 111–116 (2017)

    Google Scholar 

  25. M.C. Hsu, D. Kamensky, Immersogeometric analysis of bioprosthetic heart valves, using the dynamic augmented Lagrangian method, in Frontiers in Computational Fluid-Structure Interaction and Flow Simulation. ed. by T.E. Tezduyar (Springer International Publishing, Cham, 2018), pp. 167–212

    Google Scholar 

  26. M.C. Hsu, D. Kamensky, Y. Bazilevs, M.S. Sacks, T.J.R. Hughes, Fluid-structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation. Comput. Mech. 54(4), 1055–1071 (2014)

    MathSciNet  Google Scholar 

  27. M.C. Hsu, D. Kamensky, F. Xu, J. Kiendl, C. Wang, M.C.H. Wu, J. Mineroff, A. Reali, Y. Bazilevs, M.S. Sacks, Dynamic and fluid-structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models. Comput. Mech. 55, 1211–1225 (2015)

    Google Scholar 

  28. T.J.R. Hughes, W.K. Liu, T.K. Zimmermann, Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 29, 329–349 (1981)

    MathSciNet  Google Scholar 

  29. T.J.R. Hughes, L. Mazzei, K.E. Jansen, Large eddy simulation and the variational multiscale method. Comput. Vis. Sci. 3, 47–59 (2000)

    Google Scholar 

  30. T. Ishihara, V.J. Ferrans, S.W. Boyce, M. Jones, W.C. Roberts, Structure and classification of cuspal tears and perforations in porcine bioprosthetic cardiac valves implanted in patients. Am. J. Cardiol. 48(4), 665–678 (1981)

    Google Scholar 

  31. E.L. Johnson, D.W. Laurence, F. Xu, C.E. Crisp, A. Mir, H.M. Burkhart, C.H. Lee, M.C. Hsu, Parameterization, geometric modeling, and isogeometric analysis of tricuspid valves. Comput. Methods Appl. Mech. Eng. 384, 113960 (2021)

    MathSciNet  Google Scholar 

  32. E.L. Johnson, M.R. Rajanna, C.H. Yang, M.C. Hsu, Effects of membrane and flexural stiffnesses on aortic valve dynamics: identifying the mechanics of leaflet flutter in thinner biological tissues. Forces Mech. 6, 100053 (2022)

    Google Scholar 

  33. E.L. Johnson, M.C.H. Wu, F. Xu, N.M. Wiese, M.R. Rajanna, A.J. Herrema, B. Ganapathysubramanian, T.J.R. Hughes, M.S. Sacks, M.C. Hsu, Thinner biological tissues induce leaflet flutter in aortic heart valve replacements. Proc. Natl. Acad. Sci. 117(32), 19007–19016 (2020)

    Google Scholar 

  34. D. Kamensky, J.A. Evans, M.C. Hsu, Stability and conservation properties of collocated constraints in immersogeometric fluid-thin structure interaction analysis. Commun. Comput. Phys. 18, 1147–1180 (2015)

    MathSciNet  Google Scholar 

  35. D. Kamensky, M.C. Hsu, D. Schillinger, J.A. Evans, A. Aggarwal, Y. Bazilevs, M.S. Sacks, T.J.R. Hughes, An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. Comput. Methods Appl. Mech. Eng. 284, 1005–1053 (2015)

    MathSciNet  Google Scholar 

  36. J. Kiendl, K.U. Bletzinger, J. Linhard, R. Wüchner, Isogeometric shell analysis with Kirchhoff-Love elements. Comput. Methods Appl. Mech. Eng. 198, 3902–3914 (2009)

    MathSciNet  Google Scholar 

  37. J. Kiendl, M.C. Hsu, M.C.H. Wu, A. Reali, Isogeometric Kirchhoff-Love shell formulations for general hyperelastic materials. Comput. Methods Appl. Mech. Eng. 291, 280–303 (2015)

    MathSciNet  Google Scholar 

  38. H. Kim, J. Lu, M.S. Sacks, K.B. Chandran, Dynamic simulation of bioprosthetic heart valves using a stress resultant shell model. Ann. Biomed. Eng. 36(2), 262–275 (2008)

    Google Scholar 

  39. J.H. Lee, L.N. Scotten, R. Hunt, T.G. Caranasos, J.P. Vavalle, B.E. Griffith, Bioprosthetic aortic valve diameter and thickness are directly related to leaflet fluttering: results from a combined experimental and computational modeling study. JTCVS Open 6, 60–81 (2021)

    Google Scholar 

  40. E.K. Louie, T.J. Mason, R. Shah, T. Bieniarz, A.M. Moore, Determinants of anterior mitral leaflet fluttering in pure aortic regurgitation from pulsed Doppler study of the early diastolic interaction between the regurgitant jet and mitral inflow. Am. J. Cardiol. 61(13), 1085–1091 (1988)

    Google Scholar 

  41. A.L. Marsden, I.E. Vignon-Clementel, F. Chan, J.A. Feinstein, C.A. Taylor, Effects of exercise and respiration on hemodynamic efficiency in CFD simulations of the total cavopulmonary connection. Ann. Biomed. Eng. 35, 250–263 (2007)

    Google Scholar 

  42. P. Marx, W. Kowalczyk, A. Demircioglu, S.E. Shehada, H. Wendta, F. Mourad, M. Thielmann, H. Jakob, D. Wendt, An in vitro comparison of flow dynamics of the Magna Ease and the Trifecta prostheses. Minim. Invasive Ther. Allied Technol. 29(2), 78–85 (2020)

    Google Scholar 

  43. S. Maximus, J.C. Milliken, B. Danielsen, R. Shemin, J. Khan, J.S. Carey, Implementation of transcatheter aortic valve replacement in California: Influence on aortic valve surgery. J. Thorac. Cardiovasc. Surg. 155(4), 1447–1456 (2018)

    Google Scholar 

  44. A. Milano, U. Bortolotti, E. Talenti, C. Valfrè, E. Arbustini, M. Valente, A. Mazzucco, V. Gallucci, G. Thiene, Calcific degeneration as the main cause of porcine bioprosthetic valve failure. Am. J. Cardiol. 53(8), 1066–1070 (1984)

    Google Scholar 

  45. A. Mirnajafi, B. Zubiate, M.S. Sacks, Effects of cyclic flexural fatigue on porcine bioprosthetic heart valve heterograft biomaterials. J. Biomed. Mater. Res. Part A 94A(1), 205–213 (2010)

    Google Scholar 

  46. B. Moore, L.P. Dasi, Spatiotemporal complexity of the aortic sinus vortex. Exp. Fluids 55(7), 49–12 (2014)

    Google Scholar 

  47. J.F. Mustard, E.A. Murphy, H.C. Rowsell, H.G. Downie, Factors influencing thrombus formation in vivo. Am. J. Med. 33(5), 621–647 (1962)

    Google Scholar 

  48. R.M. Nerem, W.A. Seed, An in vivo study of aortic flow disturbances. Cardiovasc. Res. 6(1), 1–14 (1972)

    Google Scholar 

  49. V.T. Nkomo, J.M. Gardin, T.N. Skelton, J.S. Gottdiener, C.G. Scott, M. Enriquez-Sarano, Burden of valvular heart diseases: a population-based study. Lancet 368(9540), 1005–1011 (2006)

    Google Scholar 

  50. H. Nygaard, M. Giersiepen, J.M. Hasenkam, H. Reul, P.K. Paulsen, P.E. Rovsing, D. Westphal, Two-dimensional color-map** of turbulent shear stress distribution downstream of two aortic bioprosthetic valves in vitro. J. Biomech. 25(4), 429–440 (1992)

    Google Scholar 

  51. J.A. Peacock, An in vitro study of the onset of turbulence in the sinus of Valsalva. Circ. Res. 67(2), 448–460 (1990)

    Google Scholar 

  52. P. Pibarot, J.G. Dumesnil, Prosthetic heart valves: selection of the optimal prosthesis and long-term management. Circulation 119(7), 1034–1048 (2009)

    Google Scholar 

  53. E.R. Pinto, P.M. Damani, C.N. Sternberg, A.J. Liedtke, Fine flutterings of the aortic valve as demonstrated by aortic valve echocardiograms. Am. Heart J. 95(6), 807–808 (1978)

    Google Scholar 

  54. J.L. Pomar, X. Bosch, B.R. Chaitman, C. Pelletier, C.M. Grondin, Late tears in leaflets of porcine bioprostheses in adults. Ann. Thorac. Surg. 37(1), 78–83 (1984)

    Google Scholar 

  55. W.G. Rainer, R.A. Christopher, T.R. Sadler Jr., A.D. Hilgenberg, Dynamic behavior of prosthetic aortic tissue valves as viewed by high-speed cinematography. Ann. Thorac. Surg. 28(3), 274–280 (1979)

    Google Scholar 

  56. K.R. Rao, D.N. Kim, J.J. Hwang, Fast Fourier Transform - Algorithms and Applications (Springer, Netherlands, 2010)

    Google Scholar 

  57. N. Saikrishnan, G. Kumar, F.J. Sawaya, S. Lerakis, A.P. Yoganathan, Accurate assessment of aortic stenosis. Circulation 129(2), 244–253 (2014)

    Google Scholar 

  58. R.F. Siddiqui, J.R. Abraham, J. Butany, Bioprosthetic heart valves: modes of failure. Histopathology 55, 135–144 (2009)

    Google Scholar 

  59. J.C. Simo, T.J.R. Hughes, Computational Inelasticity (Springer, New York, 1998)

    Google Scholar 

  60. C.R. Smith, M.B. Leon, M.J. Mack, D.C. Miller, J.W. Moses, L.G. Svensson, E.M. Tuzcu, J.G. Webb, G.P. Fontana, R.R. Makkar, M. Williams, T. Dewey, S. Kapadia, V. Babaliaros, V.H. Thourani, P. Corso, A.D. Pichard, J.E. Bavaria, H.C. Herrmann, J.J. Akin, W.N. Anderson, D. Wang, S.J. Pocock, Transcatheter versus surgical aortic-valve replacement in high-risk patients. N. Engl. J. Med. 364(23), 2187–2198 (2011)

    Google Scholar 

  61. R.L. Smith, E.F. Blick, J. Coalson, P.D. Stein, Thrombus production by turbulence. J. Appl. Physiol. 32(2), 261–264 (1972)

    Google Scholar 

  62. J.S. Soares, K.R. Feaver, W. Zhang, D. Kamensky, A. Aggarwal, M.S. Sacks, Biomechanical behavior of bioprosthetic heart valve heterograft tissues: characterization, simulation, and performance. Cardiovasc. Eng. Technol. 7(4), 309–351 (2016)

    Google Scholar 

  63. J. Sun, M. Davidson, A. Lamy, J. Eikelboom, Antithrombotic management of patients with prosthetic heart valves: current evidence and future trends. Lancet 374(9689), 565–576 (2009)

    Google Scholar 

  64. W. Sun, M.S. Sacks, Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues. Biomech. Model. Mechanobiol. 4, 190–199 (2005)

    Google Scholar 

  65. K. Takizawa, Y. Bazilevs, T.E. Tezduyar, Space-time and ALE-VMS techniques for patient-specific cardiovascular fluid-structure interaction modeling. Arch. Comput. Methods Eng. 19, 171–225 (2012)

    MathSciNet  Google Scholar 

  66. K. Takizawa, Y. Bazilevs, T.E. Tezduyar, C.C. Long, A.L. Marsden, K. Schjodt, ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling. Math. Models Methods Appl. Sci. 24, 2437–2486 (2014)

    MathSciNet  Google Scholar 

  67. T. Terahara, K. Takizawa, T.E. Tezduyar, Y. Bazilevs, M.C. Hsu, Heart valve isogeometric sequentially-coupled FSI analysis with the space-time topology change method. Comput. Mech. 65, 1167–1187 (2020)

    MathSciNet  Google Scholar 

  68. A.A. Van Steenhoven, C.W. Verlaan, P.C. Veenstra, R.S. Reneman, In vivo cinematographic analysis of behavior of the aortic valve. Am. J. Physiol. 240(2), H286–H292 (1981)

    Google Scholar 

  69. I. Vesely, The evolution of bioprosthetic heart valve design and its impact on durability. Cardiovasc. Pathol. 12(5), 277–286 (2003)

    Google Scholar 

  70. I.E. Vignon-Clementel, C.A. Figueroa, K.E. Jansen, C.A. Taylor, Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Eng. 195, 3776–3796 (2006)

    MathSciNet  Google Scholar 

  71. J. Vogel-Claussen, H. Pannu, P.J. Spevak, E.K. Fishman, D.A. Bluemke, Cardiac valve assessment with MR imaging and 64-section multi-detector row CT. RadioGraphics 26(6), 1769–1784 (2006)

    Google Scholar 

  72. N. Vyavahare, M. Ogle, F.J. Schoen, R. Zand, D.C. Gloeckner, M. Sacks, R.J. Levy, Mechanisms of bioprosthetic heart valve failure: Fatigue causes collagen denaturation and glycosaminoglycan loss. J. Biomed. Mater. Res. 46(1), 44–50 (1999)

    Google Scholar 

  73. M.C.H. Wu, H.M. Muchowski, E.L. Johnson, M.R. Rajanna, M.C. Hsu, Immersogeometric fluid-structure interaction modeling and simulation of transcatheter aortic valve replacement. Comput. Methods Appl. Mech. Eng. 357, 112556 (2019)

    MathSciNet  Google Scholar 

  74. M.C.H. Wu, R. Zakerzadeh, D. Kamensky, J. Kiendl, M.S. Sacks, M.C. Hsu, An anisotropic constitutive model for immersogeometric fluid-structure interaction analysis of bioprosthetic heart valves. J. Biomech. 74, 23–31 (2018)

    Google Scholar 

  75. F. Xu, E.L. Johnson, C. Wang, A. Jafari, C.H. Yang, M.S. Sacks, A. Krishnamurthy, M.C. Hsu, Computational investigation of left ventricular hemodynamics following bioprosthetic aortic and mitral valve replacement. Mech. Res. Commun. 112, 103604 (2021)

    Google Scholar 

  76. F. Xu, S. Morganti, R. Zakerzadeh, D. Kamensky, F. Auricchio, A. Reali, T.J.R. Hughes, M.S. Sacks, M.C. Hsu, A framework for designing patient-specific bioprosthetic heart valves using immersogeometric fluid-structure interaction analysis. Int. J. Numer. Methods Biomed. Eng. 34(4), e2938 (2018)

    Google Scholar 

  77. Y. Yu, D. Kamensky, M.C. Hsu, X.Y. Lu, Y. Bazilevs, T.J.R. Hughes, Error estimates for projection-based dynamic augmented Lagrangian boundary condition enforcement, with application to fluid-structure interaction. Math. Models Methods Appl. Sci. 28(12), 2457–2509 (2018)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

These studies were supported by the National Heart, Lung, and Blood Institute of the National Institutes of Health under award numbers R01HL129077 and R01HL142504. This support is gratefully acknowledged. The Texas Advanced Computing Center (TACC) at The University of Texas at Austin is acknowledged for providing the HPC resources that contributed to the research results reported in these studies. Finally, the author would also like to acknowledge all the scholars who contributed to the papers reviewed in this book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily L. Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Johnson, E.L. (2023). Recent Computational Investigations of Leaflet Flutter in Thinner Biological Heart Valve Tissues. In: Tezduyar, T.E. (eds) Frontiers in Computational Fluid-Structure Interaction and Flow Simulation. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-36942-1_6

Download citation

Publish with us

Policies and ethics

Navigation