Spatial Curved Laminated Timber Structures

  • Chapter
  • First Online:
Architecture and Design for Industry 4.0

Abstract

The paper describes the physical realisation of a demonstration prototype produced by mouldless wood bending of discrete laminated timber elements which are interconnected to create a predominantly compression only spatial structure. Integrated design to production pipelines is increasingly valued in Architecture, Engineerinng and Construction, as it has contributed to develo** methods of generation of the so-called architectural geometry and in bringing the various disciplines in the industry closer together. The research presented is motivated by the application and use of timber in such a realm. It details a design to production toolkit along with development of custom actuator-based tool to deliver sustainable benefits of reduced material usage and wastage in addition to efficient production of bent wood structures. Furthermore, the paper proposes an alternative procedure for polyhedral reconstruction of disjointed force polyhedrons from an input graph, which enables the creation of spatial structures in static equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Verhagen, W.J., Bermell-Garcia, P., Van Dijk, R.E., et al.: A critical review of knowledge-based engineering: An identification of research challenges. Adv. Eng. Inf. 26(1), 5–15 (2012)

    Google Scholar 

  2. Day, G., Gasparri, E., Aitchison, M.: Knowledge-based design in industrialised house building: a case-study for prefabricated timber walls. In: Digital Wood Design, pp. 989–1016. Springer (2019)

    Google Scholar 

  3. ARUP (2019) Rethinking Timber Buildings

    Google Scholar 

  4. Himes, A., Busby, G.: Wood buildings as a climate solution. Dev. Built Environ. 4(100), 030 (2020)

    Google Scholar 

  5. Svilans, T., Tamke, M., Thomsen, M.R., et al.: New workflows for digital timber. In: Digital Wood Design, pp. 93–134. Springer, Berlin (2019)

    Google Scholar 

  6. Duro-Royo, J., Oxman, N.: Towards fabrication information modeling (fim): four case models to derive designs informed by multi-scale trans-disciplinary data. In: MRS Online Proceedings Library (OPL), p. 1800 (2015)

    Google Scholar 

  7. Poli, C.: Design for Manufacturing: A Structured Approach. Butterworth-Heinemann (2001)

    Google Scholar 

  8. Svilans, T., Poinet, P., Tamke, M., et al.: A multi-scalar approach for the modelling and fabrication of free-form glue-laminated timber structures. In: Humanizing Digital Reality, pp. 247–257. Springer, Berlin (2018)

    Google Scholar 

  9. Willmann, J., Gramazio, F., Kohler, M.: New paradigms of the automatic: robotic timber construction in architecture. In: Advancing Wood Architecture, pp. 13–28. Routledge (2016)

    Google Scholar 

  10. Apolinarska, A.A., Knauss, M., Gramazio, F., et al.: The sequential roof. In: Advancing Wood Architecture, pp. 45–59. Routledge (2016)

    Google Scholar 

  11. Helm, V., Knauss, M., Kohlhammer, T., et al.: Additive robotic fabrication of complex timber structures. In: Advancing Wood Architecture, pp. 29–44. Routledge (2016)

    Google Scholar 

  12. Thoma, A., Adel, A., Helmreich, M., et al.: Robotic fabrication of bespoke timber frame modules. In: Robotic Fabrication in Architecture, Art and Design, pp. 447–458. Springer, Berlin (2018)

    Google Scholar 

  13. Adriaenssens, S., Barnes, M., Harris, R., et al.: Dynamic relaxation: Design of a strained timber grid shell. In: Shell Structures for Architecture, pp. 103–116. Routledge (2014)

    Google Scholar 

  14. Linkwitz, K.: Force density method. In: Adriaenssens, S., Block, P., Veenendaal, D., et al. (eds.) Shell Structures For Architecture: Form Finding and Optimization, chap 6, pp. 59–69. Routledge (2014)

    Google Scholar 

  15. Sullivan, B., Epp, L., Epp, G.: Long-span timber grid shell design and analysis: the Taiyuan domes. In: Proceedings of IASS Annual Symposia, International Association for Shell and Spatial Structures (IASS), pp. 1–10 (2020)

    Google Scholar 

  16. Bhooshan, S., Bhooshan, V., Dell’Endice, A., et al.: The striatus bridge. In: Architecture, Structures and Construction, pp. 1–23 (2022)

    Google Scholar 

  17. Block, P., Van Mele, T., Rippmann, M., et al.: Redefining structural art: strategies, necessities and opportunities. Struct. Eng. 98(1), 66–72 (2020)

    Article  Google Scholar 

  18. Heisel, F., Schlesier, K., Lee, J., et al.: Design of a load-bearing mycelium structure through informed structural engineering. In: Proceeding of the World Congress on Sustainable Technologies (WCST) (2017)

    Google Scholar 

  19. Lu, Y., Seyedahmadian, A., Chhadeh, P.A., et al.: Funicular glass bridge prototype: design optimization, fabrication, and assembly challenges. Glas. Struct. Eng. 1–12 (2022)

    Google Scholar 

  20. Bhooshan, S.: Collaborative design: combining computer-aided geometry design and building information modelling. Archit. Des. 87(3), 82–89 (2017)

    Google Scholar 

  21. Saint, A.: Architect and Engineer: A Study in Sibling Rivalry. Yale University Press New Haven, CT (2007)

    Google Scholar 

  22. Scheurer, F.: Digital craftsmanship: from thinking to modeling to building. In: Digital Workflows in Architecture, pp. 110–131. Birkhäuser (2012)

    Google Scholar 

  23. Lee, J., Van Mele, T., Block, P.: Disjointed force polyhedra. Comput. Aided Des. 99, 11–28 (2018)

    Article  Google Scholar 

  24. Kilian, M., Flöry, S., Chen, Z., et al.: Curved folding. In: ACM Transactions on Graphics (TOG), p 75. ACM (2008)

    Google Scholar 

  25. Liu, Y., Pottmann, H., Wallner, J., et al.: Geometric modeling with conical meshes and developable surfaces. ACM Trans. Graph. (TOG) 25, 681–689 (2006)

    Article  Google Scholar 

  26. Poranne, R., Ovreiu, E., Gotsman, C.: Interactive planarization and optimization of 3d meshes. Comput. Graph. Forum 32 (2013a). https://doi.org/10.1111/cgf.12005

  27. Schüller, C., Poranne, R., Sorkine-Hornung, O.: Shape representation by zippables. ACM Trans. Graph. 37(4) (2018)

    Google Scholar 

  28. Bhooshan, V., Reeves, D., Bhooshan, S., et al.: Mayavault—a mesh modelling environment for discrete funicular structure. Nexus Netw. J. 20(3), 567–582 (2018)

    Article  Google Scholar 

  29. Jiang, C., Tang, C., Tomičí, M., et al.: Interactive Modeling of Architectural Freeform Structures: Combining Geometry with Fabrication and Statics. In: Advances in Architectural Geometry 2014, pp. 95–108. Springer, Berlin (2015)

    Google Scholar 

  30. Prévost, R., Whiting, E., Lefebvre, S., et al.: Make it stand: balancing shapes for 3D fabrication. ACM Trans. Graph. (TOG) 32(4), 81 (2013)

    Article  MATH  Google Scholar 

  31. Tang, C., Sun, X., Gomes, A., et al.: Form-finding with polyhedral meshes made simple. ACM Trans. Graph. 33(4), 70–71 (2014)

    Article  MATH  Google Scholar 

  32. Akbarzadeh, M., Van Mele, T., Block, P.: On the equilibrium of funicular polyhedral frames and convex polyhedral force diagrams. Comput. Aided Des. 63, 118–128 (2015)

    Article  Google Scholar 

  33. Block, P., Ochsendorf, J.: Thrust network analysis: A new methodology for three-dimensional equilibrium. J.-Int. Assoc. Shell Spat. Struct. 155, 167 (2007)

    Google Scholar 

  34. Rippmann, M.: Funicular Shell Design: Geometric Approaches to Form Finding and Fabrication of Discrete Funicular Structures (2016)

    Google Scholar 

  35. Rippmann, M., Tv, M., Popescu, M., et al.: The armadillo vault: Computational design and digital fabrication of a freeform stone shell. Adv. Arch. Geom. 2016, 344–363 (2016)

    Google Scholar 

  36. Vouga, E., Mathias, H., Wallner, J., et al.: Design of Self-supporting surfaces. ACM Trans. Graph. 31(4) (2012)

    Google Scholar 

  37. Bhooshan, V., Louth, H.D., Bhooshan, S., et al.: Design workflow for additive manufacturing: a comparative study. Int. J. Rapid Manuf. 7(2–3), 240–276 (2018)

    Article  Google Scholar 

  38. Louth, H., Reeves, D., Koren, B., et al.: A prefabricated dining pavilion: Using structural skeletons, developable offset meshes, kerf-cut and bent sheet materials. In: Menges, A., Sheil, B., Glynn, R., et al. (eds.) Fabricate 2017, pp. 58–67. UCL Press (2017)

    Google Scholar 

  39. Bhooshan, V., Fuchs, M., Bhooshan, S.: 3d printing, topology optimization and statistical learning: A case study. In: Proceedings of the 2017 Symposium on Simulation for Architecture and Urban Design, Society for Computer Simulation International (2017)

    Google Scholar 

  40. Pottmann, H., Brell-Cokcan, S., Wallner, J.: Discrete surfaces for architectural design. In: Curves and Surfaces, pp 213–234. Avignon (2006)

    Google Scholar 

  41. Bhooshan, S., El Sayed, M.: Use of sub-division surfaces in architectural form-finding and procedural modelling. In: Proceedings of the 2011 Symposium on Simulation for Architecture and Urban Design, Society for Computer Simulation International, pp. 60–67 (2011)

    Google Scholar 

  42. Bhooshan, S., Veenendaal, D., Block, P.: Particle-spring systems—Design of a cantilevering concrete canopy. In: Adriaenssens, S., Block, P., Veenendaal, D., et al. (eds.).: Shell Structures for Architecture: Form Finding and Optimization, p. 103. Routledge (2014)

    Google Scholar 

  43. Bhooshan, S., Bhooshan, V., ElSayed, M., et al.: Applying dynamic relaxation techniques to form-find and manufacture curve-crease folded panels. SIMULATION 91(9), 773–786 (2015)

    Article  Google Scholar 

  44. Bhooshan, S., Bhooshan, V., Shah, A., et al.: Curve-folded formwork for cast, compressive skeletons. In: Proceedings of the Symposium on Simulation for Architecture and Urban Design. Society for Computer Simulation International, pp, 221–228. San Diego, CA, USA, SimAUD ’15 (2015b)

    Google Scholar 

  45. Bhooshan, S., Ladinig, J., Van Mele, T., et al.: Function representation for robotic 3D printed concrete. In: Robotic Fabrication in Architecture, Art and Design, pp 98–109. Springer, Berlin (2018a)

    Google Scholar 

  46. Panozzo, D., Block, P., Sorkine-Hornung, O.: Designing unreinforced masonry models. ACM Trans. Graph. (TOG) 32(4), 91 (2013)

    Google Scholar 

  47. Schwartzburg, Y., Pauly, M.: Fabrication-aware design with intersecting planar pieces. In: Computer Graphics Forum, pp. 317–326. Wiley Online Library (2013)

    Google Scholar 

  48. Maxwell, J.C.: Xlv. on reciprocal figures and diagrams of forces. Lond., Edinb., Dublin Philos. Mag. J. Sci. 27(182), 250–261 (1864)

    Google Scholar 

  49. Rankine, W.: Xvii. principle of the equilibrium of polyhedral frames. Lond., Edinb., Dublin Philos. Mag. J. Sci. 27(180), 92–92 (1864)

    Google Scholar 

  50. Akbarzadeh, M.: 3d graphic statics using reciprocal polyhedral diagrams Ph.D. Ph.D. thesis, thesis Zurich, Switzerland: ETH Zurich (2016)

    Google Scholar 

  51. Hablicsek, M., Akbarzadeh, M., Guo, Y.: Algebraic 3d graphic statics: Reciprocal constructions. Comput. Aided Des. 108, 30–41 (2019)

    Article  MathSciNet  Google Scholar 

  52. Lee, J., Meled, T.V., Block, P.: Form-finding explorations through geometric transformations and modifications of force polyhedrons. In: Proceedings of IASS Annual Symposia, International Association for Shell and Spatial Structures (IASS), pp. 1–10 (2016)

    Google Scholar 

  53. Williams, C., McRobie, A.: Graphic statics using discontinuous airy stress functions. Int. J. Space Struct. 31(2–4), 121–134 (2016)

    Article  Google Scholar 

  54. Akbarzadeh, M., Nejur, A.: PolyFrame Manual. Polyhedral Structures Laboratory, Penn Design. University of Pennsylvania (2018)

    Google Scholar 

  55. Mele, T.V., Liew, A., Echenagucia, T.M., et al.: Compas: A Framework for Computational Research in Architecture and Structures (2017). www.compas-dev.github.io/compas/

  56. Bolhassani, M., Akbarzadeh, M., Mahnia, M., et al.: On structural behavior of a funicular concrete polyhedral frame designed by 3d graphic statics. Structures 14 (2018)

    Google Scholar 

  57. Bhooshan, V., Louth, H., Bieling, L., et al.: Spatial developable meshes. In: Design Modelling Symposium, pp. 45–58. Springer, Berlin (2019)

    Google Scholar 

  58. Liu, Y., Lu, Y., Akbarzadeh, M.: Kerf bending and zipper in spatial timber tectonics: A polyhedral timber space frame system manufacturable by 3-axis cnc milling machine. In: Proceedings of the Association for Computer-Aided Design in Architecture (ACADIA) (2021)

    Google Scholar 

  59. Reeves, D., Bhooshan, V., Bhooshan, S.: Freeform developable spatial structures. In: Proceedings of IASS Annual Symposia, International Association for Shell and Spatial Structures (IASS), pp. 1–10 (2016)

    Google Scholar 

  60. Wang, Z., Akbarzadeh, M.: A polyhedral approach for the design of a compression-dominant, double-layered, reciprocal frame, multi-species timber shell. In: Proceedings of IASS Symposium and Spatial Structures Conference 2022, Innovation Sustainability Legacy. Bei**g, China (2022)

    Google Scholar 

  61. Adney, E.T., Chapelle, H.I.: Bark Canoes and Skin Boats of North America. Skyhorse Publishing Inc. (2007)

    Google Scholar 

  62. Estep, H.C.: How Wooden Ships are Built a Practical Treatise on Modern American Wooden Ship Construction, with a Supplement on Laying Off Wooden Vessels (1918). http://books.google.com/books?id=wwowAAAAYAAJ

  63. Wright, R.S., Bond, B.H., Chen, Z.: Steam bending of wood; embellishments to an ancient technique. BioResources 8(4), 4793–4796 (2013)

    Article  Google Scholar 

  64. Ursula, F.: Beyond the Truss [Lecture]. University College of London (2022)

    Google Scholar 

  65. Krieg, O., Menges, A.: Potentials of robotic fabrication in wood construction: elastically bent timber sheets with robotically fabricated finger joints. In: Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture, pp. 253–260 (2013)

    Google Scholar 

  66. Menges, A.: Integrative Design Computation: integrating material behaviour and robotic manufacturing processes in computational design for performative wood constructions. In: ACADIA 2011 Proceedings: Integration Through Computation, pp. 72–81 (2011)

    Google Scholar 

  67. Naboni, R., Marino, S.D.: Wedged kerfing. In: Design and Fabrication Experiments in Programmed Wood Bending, pp. 1283–1294 (2022). https://doi.org/10.5151/sigradi2021-85

  68. Satterfield, B., Preiss, A., Mavis, D., et al.: Bending the line zippered wood creating non-orthogonal architectural assemblies using the most common linear building component (the 2x4). In: Burry, J., Sabin, J., Sheil, B., et al. (eds.) Fabricate: Making Resilient Architecture, pp. 58–65 (2020)

    Google Scholar 

  69. Self, M., Bretnall, C., Dodd, S., et al.: Timber Seasoning Shelter (2014). www.designandmake.aaschool.ac.uk/project/timber-seasoning-shelter/

  70. Drexler, A.: Charles Eames Furniture From the Design Collection the Museum of Modern Art. The Museum of Modern Art (1973)

    Google Scholar 

  71. Lienhard, J., Alpermann, H., Gengnagel, C., et al.: Active bending, a review on structures where bending is used as a self-formation process. Int. J. Space Struct. 28(3–4), 187–196 (2013)

    Article  Google Scholar 

  72. Neuhaeuser, S., Rippmann, M., Mielert, F., et al.: Architectural and structural investigation of complex grid systems. In: Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium (2010). https://doi.org/10.1145/2461912.2461958

  73. Bhooshan, V., Bhooshan, S., et al.: zspace: A Simple C++ Header-Only Collection of Geometry Data-Structures, Algorithms, and City Data Visualization Framework (2018b). https://github.com/gitzhcode/zspacetoolsets

  74. Json.org (1999) JSON. https://www.json.org/json-en.html

  75. Schek, H.J.: The force density method for form finding and computation of general networks. Comput. Methods Appl. Mech. Eng. 3(1), 115–134 (1974)

    Article  MathSciNet  Google Scholar 

  76. Akbarzadeh, M., Mele, T.V., Block, P.: Three-dimensional compression form finding through subdivision. In: Proceedings of IASS Annual Symposia, International Association for Shell and Spatial Structures (IASS), pp. 1–7 (2015a)

    Google Scholar 

  77. Akbarzadeh, M., Van Mele, T., Block, P.: Compression-only form finding through finite subdivision of the external force polygon. In: Proceedings of the IASS-SLTE 2014 Symposium. Brasilia, Brazil (2014)

    Google Scholar 

  78. Kremer, M., Bommes, D., Kobbelt, L.: Open volume mesh–a versatile index-based data structure for 3d polytopal complexes. In: Proceedings of the 21st International Meshing Roundtable, pp. 531–548. Springer, Berlin (2013)

    Google Scholar 

  79. McRobie, A.: Rankine Reciprocals with Zero Bars. Preprint (2017)

    Google Scholar 

  80. Minkowski, H.: Allgemeine lehrs¨atze u¨ber die convexen polyeder. Nachrichten von der Gesellschaft der Wissenschaften zu G¨ottingen. Mathematisch-Physikalische Klasse 1897, 198–220 (1897)

    Google Scholar 

  81. Little, J.J.: An iterative method for reconstructing convex polyhedra from extended gaussian images. In: Proceedings of the Third AAAI Conference on Artificial Intelligence, pp. 247–250 (1983)

    Google Scholar 

  82. Graham, R.L., Yao, F.F.: Finding the convex hull of a simple polygon. J. Algorithms 4(4), 324–331 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  83. Poranne, R., Ovreiu, E., Gotsman, C.: Interactive planarization and optimization of 3D meshes. Comput. Graph. Forum 32(1), 152–163 (2013b). https://doi.org/10.1111/cgf.12005

  84. Bouaziz, S., Deuss, M., Schwartzburg, Y., et al.: Shape-up: Sha** discrete geometry with projections. Comput. Graph. Forum 31(5), 1657–1667 (2012). https://doi.org/10.1111/j.1467-8659.2012.03171.x

    Article  Google Scholar 

  85. Lachauer, L., Block, P.: Interactive equilibrium modelling. J. Int. Assoc. Shell Spat. Struct. 29(1) (2014)

    Google Scholar 

  86. Coxeter, H.S.M., Greitzer, S.L.: Geometry Revisited, vol. 19 (1967). Maa Day, G., Gasparri, E., Aitchison, M.: Knowledge-based design in industrialised house building: A case-study for prefabricated timber walls. In: Digital Wood Design, pp. 989–1016. Springer, Berlin (2019)

    Google Scholar 

  87. Catmull, E., Clark, J.: Recursively generated b-spline surfaces on arbitrary topological meshes. Comput. Aided Des. 10(6), 350–355 (1978)

    Article  Google Scholar 

  88. Mcgee, W., Feringa, J., Søndergaard, A.: Processes for an Architecture of Volume, pp. 62–71 (2013). https://doi.org/10.1007/978-3-7091-1465-05

  89. Hart, G.W.: Conway notation for polyhedral (2006). http://www.gergehartco/virtual-polyhedra/conwaynotation.html

  90. Tolomatic (2019). https://www.tolomatic.com/products/product-details/rsx-extreme-force-electric-linear-actuators. Accessed 01 Aug 2022

  91. Mellis, D., Banzi, M., Cuartielles, D., et al.: Arduino: An open electronic prototy** platform. Proc. CHI 2007, 1–11 (2007)

    Google Scholar 

Download references

Acknowledgements

We would like to thank all the student participants of our free open to all online Timber Tectonics workshop at DigitalFUTURES 2021 and CAAD Futures 2021. Some of the results produced during the workshops are shown in Fig. 18.

The research paper focused on describing the integrated DTP toolchain for the demonstrator prototype. The project team for the physical demonstrator comprised many more contributors. The full project credits are listed below.

Design

ZHA CODE: Vishu Bhooshan, Henry Louth, Shajay Bhooshan.

Fabrication Design

ZHA CODE: Taizhong Chen, Vishu Bhooshan, Henry Louth.

LID: Alicia Nahmad.

Fabrication & Assembly

LID: Guy Gardner, Matt Walker, Youness Yousefi, Jo-Lynn Yen, Anagha Patil, Alicia Nahmad.

Documentation

ZHA CODE: Ling Mao, Taizhong Chen, Philip Singer, Vishu Bhooshan, Henry Louth.

LID: Matt Walker, Youness Yousefi, Alicia Nahmad.

with support from

ZHA CODE: Jianfei Chu, Edward Meyers.

AA: Jean-Nicola Dackiw.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vishu Bhooshan or Alicia Nahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhooshan, V. et al. (2024). Spatial Curved Laminated Timber Structures. In: Barberio, M., Colella, M., Figliola, A., Battisti, A. (eds) Architecture and Design for Industry 4.0. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-36922-3_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36922-3_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36921-6

  • Online ISBN: 978-3-031-36922-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation