Full-Scale Multi-Dataset OMA on a 368-Meter High TV and Radio Transmission Tower

  • Conference paper
  • First Online:
Dynamics of Civil Structures, Volume 2 (SEM 2023)

Abstract

The state-of-the-art OMA algorithms have been used to identify the dynamic parameters from output-only vibration data acquired in a testing campaign carried out on a remarkable 368 m high steel structure, namely, the Riga Television and Radio transmission tower. The structure is unique both in terms of the structural system and of societal relevance since it is a historical monument and a landmark for Riga, one of the capitals of the Baltic States. Two independent acquisition systems were used to measure the vibration responses of the tower at a total of 48 DOFs along its height.

Each acquisition system is constituted of two 3D vibration sensors. One of the acquisition systems is used as a reference, and the other one is a moving system. The latter was relocated to different stories and antenna, and the former remained at the same (reference) storey throughout the test. Because the two different systems were not synchronized, advanced post-processing techniques were employed to synchronize the different datasets and subsequently identify the global modal properties of the tower.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zahid, F.B., Ong, Z.C., Khoo, S.Y.: A review of operational modal analysis techniques for in-service modal identification. J. Braz. Soc. Mech. Sci. Eng. 42(8) (2020). https://doi.org/10.1007/S40430-020-02470-8

  2. Zhang, L., Brincker, R.: An overview of operational modal analysis: Major development and issues. In: Proceedings of the 1st International Operational Modal Analysis Conference, IOMAC 2005 (2005)

    Google Scholar 

  3. Cunha, Á., Caetano, E.: Experimental modal analysis of civil engineering structures. Clin. Microbiol. Infect. 12(SUPPL. 3), 12–24 (2006). https://doi.org/10.1111/J.1469-0691.2006.01393.X

    Article  Google Scholar 

  4. Brincker, R., Ventura, C.E.: Introduction to operational modal analysis. In: Introduction to Operational Modal Analysis, pp. 1–360. John Wiley & Sons (2015). https://doi.org/10.1002/9781118535141

    Chapter  MATH  Google Scholar 

  5. Gara, F., Arezzo, D., Nicoletti, V., Carbonari, S.: Monitoring the modal properties of an RC school building during the 2016 Central Italy Seismic Swarm. J. Struct. Eng. 147(7), 05021002 (2021). https://doi.org/10.1061/(ASCE)ST.1943-541X.0003025

    Article  Google Scholar 

  6. Ramos, L.F., Marques, L., Lourenço, P.B., de Roeck, G., Campos-Costa, A., Roque, J.: Monitoring historical masonry structures with operational modal analysis: Two case studies. Mech. Syst. Signal Process. 24(5), 1291–1305 (2010). https://doi.org/10.1016/J.YMSSP.2010.01.011

    Article  Google Scholar 

  7. Regni, M., Arezzo, D., Carbonari, S., Gara, F., Zonta, D.: Effect of environmental conditions on the modal response of a 10-story reinforced concrete tower. Shock. Vib. 2018, 9476146 (2018). https://doi.org/10.1155/2018/9476146

    Article  Google Scholar 

  8. Avci, O., Alkhamis, K., Abdeljaber, O., Alsharo, A., Hussein, M.: Operational modal analysis and finite element model updating of a 230 m tall tower. Structures. 37, 154–167 (2022). https://doi.org/10.1016/J.ISTRUC.2021.12.078

    Article  Google Scholar 

  9. Savnik, N.J., Katsanos, E.I., Amador, S.D.R., Ventura, C.E., Brincker, R.: Influence of diaphragm modelling on the dynamic performance of a reinforced concrete high-rise building. In: Proceedings of ISMA 2018 – International Conference on Noise and Vibration Engineering and USD 2018 – International Conference on Uncertainty in Structural Dynamics (2018)

    Google Scholar 

  10. Gargaro, D., Rainieri, C., Fabbrocino, G.: Structural and seismic monitoring of the ‘cardarelli’ Hospital in Campobasso. Procedia Eng. (2017). https://doi.org/10.1016/j.proeng.2017.09.244

  11. Reynolds, T., Harris, R., Chang, W.S., Bregulla, J., Bawcombe, J.: Ambient vibration tests of a cross-laminated timber building. Proc. Inst. Civ. Eng. Constr. Mater. (2015). https://doi.org/10.1680/coma.14.00047

  12. Pecorelli, M.L., Ceravolo, R., Epicoco, R.: An automatic modal identification procedure for the permanent dynamic monitoring of the Sanctuary of Vicoforte. Int. J. Archit. Heritage. (2018). https://doi.org/10.1080/15583058.2018.1554725

  13. Omar, O., Tounsi, N., Ng, E.G., Elbestawi, M.A.: An optimized rational fraction polynomial approach for modal parameters estimation from FRF measurements. J. Mech. Sci. Technol. 24(3), 831–842 (2010). https://doi.org/10.1007/S12206-010-0123-Z

    Article  Google Scholar 

  14. Brincker, R., Zhang, L., Andersen, P.: Modal identification of output-only systems using frequency domain decomposition. Smart Mater. Struct. 10(3), 441 (2001). https://doi.org/10.1088/0964-1726/10/3/303

    Article  Google Scholar 

  15. Magalhães, F., Cunha, Á., Caetano, E., Brincker, R.: Dam** estimation using free decays and ambient vibration tests. Mech. Syst. Signal Process. 24(5), 1274–1290 (2010). https://doi.org/10.1016/J.YMSSP.2009.02.011

    Article  Google Scholar 

  16. Goursat, M., Döhler, M., Mevel, L., Andersen, P.: Crystal clear SSI for operational modal analysis of aerospace vehicles. Conf. Proc. Soc. Exp. Mech. Ser. 3(PART 2), 1421–1430 (2011). https://doi.org/10.1007/978-1-4419-9834-7_125/COVER

    Article  Google Scholar 

  17. van Overschee, P., de Moor, B.: Subspace Identification for Linear Systems. Springer US, Boston (1996). https://doi.org/10.1007/978-1-4613-0465-4

    Book  MATH  Google Scholar 

  18. Ewins, D.J.: Model validation: Correlation for updating. Sadhana. 25(3), 221–234 (2000). https://doi.org/10.1007/BF02703541

    Article  Google Scholar 

  19. Mikitarenko, M.A., Perelmuter, A.V.: Safe fatigue life of steel towers under the action of wind vibrations. J. Wind Eng. Ind. Aerodyn. 74–76, 1091–1100 (1998). https://doi.org/10.1016/S0167-6105(98)00100-7

    Article  Google Scholar 

  20. Grau, M.: “Almaty Tower,” Wikimedia Foundation, Oct. 09, 2012. https://en.wikipedia.org/wiki/Almaty_Tower#/media/File:TV-Turm_Almaty_-_3.jpg (Accessed 13 Oct 2022)

  21. Yakovlev, S.: “Yerevan TV Tower,” Wikimedia Foundation, July 03, 2006. https://en.wikipedia.org/wiki/Yerevan_TV_Tower#/media/File:Yerevan_TV_tower.jpg (Accessed 13 Oct 2022)

  22. Kober, “Tbilisi TV Broadcasting Tower,” Wikimedia Foundation, Jan 01, 2007. https://en.wikipedia.org/wiki/Tbilisi_TV_Broadcasting_Tower#/media/File:Mt_Mtats’minda,_Tbilisi,_Georgia_(view_from_Metekhi_cliff).JPG (Accessed 13 Oct 2022)

  23. Ace^eVg, “Kharkiv TV Tower,” Wikimedia Foundation, May 22, 2007. https://en.wikipedia.org/wiki/File:Kharkov_TV_tower.jpg (Accessed 13 Oct 2022)

  24. Fundamental Principles Behind the Sigma-Delta ADC Topology: Part 1 | Analog Devices. https://www.analog.com/en/technical-articles/behind-the-sigma-delta-adc-topology.html (Accessed 16 Sept 2022)

  25. Рижская радиотелевизионная башня. Экспериментальное определение параметров колебаний башни от ветрового воздействия. ОНИС 549, Днепропетровск (1989)

    Google Scholar 

  26. Au, S.K., Brownjohn, J.M.W., Li, B., Raby, A.: Understanding and managing identification uncertainty of close modes in operational modal analysis. Mech. Syst. Signal Process. 147, 107018 (2021). https://doi.org/10.1016/J.YMSSP.2020.107018

    Article  Google Scholar 

  27. Kita, A., Cavalagli, N., Ubertini, F.: Temperature effects on static and dynamic behavior of Consoli Palace in Gubbio, Italy. Mech. Syst. Signal Process. (2019). https://doi.org/10.1016/j.ymssp.2018.10.021

  28. Yuen, K.V., Kuok, S.C.: Ambient interference in long-term monitoring of buildings. Eng. Struct. (2010). https://doi.org/10.1016/j.engstruct.2010.04.012

  29. Cornwell, P., Farrar, C.R., Doebling, S.W., Sohn, H.: Environmental variability of modal properties. Exp. Tech. 23(6), 45–48 (1999). https://doi.org/10.1111/J.1747-1567.1999.TB01320.X

    Article  Google Scholar 

  30. García-Fernández, N., Pelayo, F., Aenlle, M.: Examples of model correlation with closely spaced modes. In: 9th International Operational Modal Analysis Conference, pp. 35–45 (2022)

    Google Scholar 

  31. Brincker, R., Lopez-Aenlle, M.: Mode shape sensitivity of two closely spaced eigenvalues. J. Sound Vib. 334, 377–387 (2015). https://doi.org/10.1016/J.JSV.2014.08.015

    Article  Google Scholar 

Download references

Acknowledgments

The raw data for the publication courtesy of 100% Latvia state-owned company “Latvijas Valsts radio un televīzijas centrs” (LVRTC). The authors especially would like to thank the technicians – high climbers of LVRTC Normunds Patmalnieks and Eduards Putilins for their valuable support and assistance in the dynamic testing of the structure and Julija Batalauska for excellent organizational help. The technicians Klaus Myndal and Ian Rasmussen of the Civil and Mechanical Engineering Department (CONSTRUCT) at the Technical University of Denmark (DTU) for their assistance in the preparation and testing of the measurement system used in the multi-dataset vibration test of the Riga TV and Radio Transmission Tower.

This work has been supported by the European Regional Development Fund within the Activity 1.1.1.2 “Post-doctoral Research Aid” of the Specific Aid Objective 1.1.1 “To increase the research and innovative capacity of scientific institutions of Latvia and the ability to attract external financing, investing in human resources and infrastructure” of the Operational Programme “Growth and Employment” (No.1.1.1.2/VIAA/3/19/393).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Gaile .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gaile, L., Amador, S.D.R., Lydakis, E., Brincker, R. (2024). Full-Scale Multi-Dataset OMA on a 368-Meter High TV and Radio Transmission Tower. In: Noh, H.Y., Whelan, M., Harvey, P.S. (eds) Dynamics of Civil Structures, Volume 2. SEM 2023. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-031-36663-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36663-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36662-8

  • Online ISBN: 978-3-031-36663-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation