Low-Energy Effective Theories

  • Chapter
  • First Online:
Introduction to String Theory

Part of the book series: Theoretical and Mathematical Physics ((TMP))

  • 1001 Accesses

Abstract

We construct the low-energy effective theories of the five 10d supersymmetric strings: their Lagrangians are essentially determined by SUSY. The effective theories yield a description which is non-perturbative in the sense that, while it is valid only asymptotically for small momenta, in this IR regime remains reliable for all values of the string coupling constant g. This remarkable property reflects the existence of powerful SUSY non-renormalization theorems for the relevant couplings and their dependence on g. We construct the half-BPS solutions of the effective theories: here the fundamental fact is that the SUSY central charges are not renormalized, so the results we get at the effective level are exact in the full string theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(\mu \), \(\alpha \) are \( Spin (d-1,1)\) vector and spinor indices, respectively. A is the SUSY extension index on which the R-symmetry group acts.

  2. 2.

    \(R\ne \textbf{UAut}\) only when the gravitational supermultiplet satisfies a reality constraint.

  3. 3.

    This follows from the representation theory of SUSY algebras [9]: it extends to the full connection in the covariant derivative \(D_\mu \) the well-known fact that in GR the spin-connection \({\omega _\mu }^{mn}\) is not a fundamental field but a composite operator of the vielbein \(e^m_\mu \) and its derivatives.

  4. 4.

    We refer to Sect.  11.1.1 for background on Riemannian holonomy groups and the facts alluded in the text. In this Chapter we use well-known results from differential geometry in an informal fashion.

  5. 5.

    For the definition and basic properties of Kähler, hyperKähler, and quaternionic Kähler geometries see Sect. 11.1.1 or [12,13,14].

  6. 6.

    Toroidal compactification changes the scalar manifold \(\mathcal {M}\) as Eq. (8.6) and Table 8.1 imply. However the scalar manifold of the higher dimensional theory is a totally geodesic subspace of the one in lower dimension, while all totally geodesic subspaces of a locally symmetric space is also locally symmetric. Hence the statement in the gray box holds in \(d\ge 3\) dimensions if it holds in \(d=3\). We shall illustrate this point explicitly in Chap. 13 when studying group disintegration and U-duality.

  7. 7.

    The border case of 8 supercharges will be considered in detail in Chap. 11.

  8. 8.

    A truncation of d.o.f. in a classical Lagrangian field theory is a consistent truncation iff all solutions of the truncated model are solutions to the original e.o.m. The truncation to configurations invariant under some bosonic symmetry is always consistent.

  9. 9.

    Warning. There is one way the argument in the text may fail: several short supermultiplets can recombine together to form a long one. This phenomenon does not happen when the BPS supermultiplets preserve many supercharges (the supermultiplets are “ultrashort”) which is the case of interest in the present chapter.

  10. 10.

    More generally one can consider geometries which are asymptotic to anti-de Sitter (AdS), see [26, 27] or Chap. 6 of [1].

  11. 11.

    The statement in the main text is slightly stronger than the Weinberg-Witten theorem.

  12. 12.

    Properly speaking, the argument in the text applies only for \(d\ge 4\), since for \(d\le 3\) there is no propagating graviton i.e. no state \(|2\rangle \). However the result remains true in 3d if we restrict to locally non-trivial theories, i.e. SUGRA models with propagating local d.o.f. [1].

  13. 13.

    By the standard relations between (universal) Clifford algebras in different signatures [32], the function defined here, \(\boldsymbol{N}(d)\), is equal to \(2\,\textbf{N}(d-2)\) where \(\textbf{N}(k)\) is the function defined in Eq. (2.57) of [1] i.e. the real dimension of the irreducible modules of the Clifford \(\mathbb {R}\)-algebra in dimension k.

  14. 14.

    Here ‘combine’ means identification at the linearized level (which is enough to identify and count d.o.f.). The full non-linear relation between 11d and 10d fields is, of course, more involved.

  15. 15.

    Here and below a symbol of the form \(X^{(k)}\) means that the field X is a k-form.

  16. 16.

    See, for instance, for 11 SUGRA in [33], for 10d IIA SUGRA in [34, 35], for 10d IIB SUGRA in [36], and for 10d \(\mathcal {N}=1\) SUGRA with matter in [37].

  17. 17.

    For Kaluza-Klein geometries in supergravity see the review [39].

  18. 18.

    Mutatis mutandis this is the same mechanism as discussed in BOX 6.2.

  19. 19.

    This formula holds up to a term which when multiplied by \(\sqrt{-G_{(11)}}\) becomes an irrelevant total derivative

  20. 20.

    But recall the crucial subtleties with the BRST invariance at zero momentum–see the final part of Sect. 3.7.3, BOX 3.3, and Sect. 5.6.

  21. 21.

    10d IIB SUGRA was first constructed in [43, 44].

  22. 22.

    For the theory of \(G(\mathbb {R})\)-invariant field-strenghts in extended SUGRA see Sect. 4.7.1 of [1]

  23. 23.

    For the theory of the Iwasawa gauge in SUGRA see Sect. 5.11 of [1]

  24. 24.

    We cannot gauge a continuous subgroup since there are no vector fields.

  25. 25.

    Here and below a subscript E means that the quantity is in the Einstein frame.

  26. 26.

    For exact solutions to Einstein’s equations see e.g. [54].

  27. 27.

    For heterotic/Type I BPS branes see Sect. 13.4.1.

  28. 28.

    In this section the IIB RR field \(C^{(0)}\) is seen as a 0-form gauge field rather than a scalar.

  29. 29.

    The charges are canonically normalized so that e is the Noether charge while m is the topological charge with Dirac’s normalization. The RR vertices (i.e. the Kähler-Dirac BRST condition) treat the field strengths \(F^{(k)}\) and their dual \(*F^{(10-k)}\) symmetrically, so in string theory it may be more natural to normalize the electric and magnetic charges with the same overall numerical coefficient.  Various normalization conventions are used in the literature.

  30. 30.

    The asymmetry is only apparent because it depends on which d.o.f. we use to describe the physics: electric fields or the dual magnetic ones. Going to the dual description electric and magnetic charges invert their roles. Recall from the Kähler-Dirac formulation of the R-R gauge fields in Chap. 3 that the superstring treats the gauge fields and their duals in a democratic way.

  31. 31.

    For the moment we consider branes carrying only one type of charge.

  32. 32.

    The original rotational-invariant ansatz, being the most general configuration invariant under a bosonic symmetry, is automatically a consistent truncation of SUGRA and we insert that ansatz directly into the action. That our slightly generalized ansatz is still a consistent truncation may be less obvious; however the property may be checked using the Ricci curvatures for a metric conformally equivalent to the warped product \(\mathbb {R}^m\times _{e^A} \mathbb {R}^{n-1,1}\) see BOX 8.6.

  33. 33.

    Here \(\epsilon _{\mu _1\cdots \mu _d}\) is the totally antisymmetric tensor with \(\epsilon _{0\cdots d-1}=1\) and the same for \(\epsilon _{m_1\cdots m_{\tilde{d}+1}n}\).

  34. 34.

    Note that the two exponents in (8.125) \(d\sigma +(D-2)B\) and \(-d\sigma +(D-2)B-a_k \phi +2C\) vanish when (8.126) holds. This fact greatly simplifies the algebraic manipulations.

  35. 35.

    We absorb an overall constant in the normalization of the coordinates.

  36. 36.

    The pairs (pq) of coprime integers, taken modulo PCT, i.e. \((p,q)\sim (-p,-q)\), are in 1-to-1 correspondence with the points in the projective line over the rational \(\mathbb {P}^1(\mathbb {Q})\). Clearly \(\mathbb {P}^1(\mathbb {Q})\) is the modular group \(PSL(2,\mathbb {Z})\) modulo its unipotent subgroup  \(T^\mathbb {Z}\), \(\mathbb {P}(\mathbb {Q})\simeq PSL(2,\mathbb {Z})/T^{\mathbb {Z}}\).

  37. 37.

    This is a situation which happens only in Lorentzian signature: the holonomy group of a positive-signature metric is always reductive being a closed subgroup of the compact group O(d).

  38. 38.

    For the theory of Lorentzian holonomy groups see [74,75,76,77]; for a review Sect. 3.7 of [1].

  39. 39.

    \(i=1,\dots ,9\) for 11d and \(i=1,\dots ,8\) for 10d IIB.

References

  1. Cecotti, S.: Supersymmetric Field Theories. Cambridge University Press, Geometric Structures and Dualities (2015)

    MATH  Google Scholar 

  2. Freedman, D.Z., van Nieuwenhuizen, P., Ferrara, S.: Progress toward a theory of supergravity. Phys. Rev. D. 13, 3214–3218 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  3. Deser, S., Zumino, B.: Consistent supergravity. Phys. Lett. B. 62, 335 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  4. Freedman, D., van Proeyen, A.: Supergravity, CUP 2012

    Google Scholar 

  5. Salam, A., Sezgin, E. (eds.): Supergravities in Diverse Dimensions, Vol. 1, 2. World-Scientific, North-Holand (1989)

    Google Scholar 

  6. Castellani, L., D’Auria, R., Fré, P.: Supergravity and Superstrings: A Geometric Perspective. World Scientific (1991)

    Google Scholar 

  7. Fré, P.G.: Advances in geometry and Lie algebras from supergravity. Springer (2018)

    Google Scholar 

  8. Atiyah, M.F., Bott, R., Shapiro, A.: Clifford modules. Topol. 3, 3–38 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  9. Strathdee, J.: Extended poincaré supersymmetry. Int. J. Mod. Phys. A. 2, 273–300 (1987)

    Article  ADS  MATH  Google Scholar 

  10. Haag, R., Łopuszanski, J.T., Sohnius, M.: All possible generators of supersymmetries of the \(S\)-matrix. Nucl. Phys. B. 88, 257 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  11. Coleman, S.R., Mandula, J.: All possible symmetries of the S matrix. Phys. Rev. 159, 1251–1256 (1967)

    Article  ADS  MATH  Google Scholar 

  12. Besse, A.: Einstein Manifolds. Springer (1987

    Google Scholar 

  13. Joyce, D.D.: Compact Manifolds with Special Holonomy. Oxford University Press, Oxford Mathematical Monographs (2000)

    MATH  Google Scholar 

  14. Joyce, D.D.: Riemannian holonomy groups and calibrated geometry, Oxford Graduate Texts in Mathematics vol. 12. Oxford University Press (2007)

    Google Scholar 

  15. Zumino, B.: Supersymmetry and Kahler manifolds. Phys. Lett. B. 87, 203 (1979)

    Article  ADS  Google Scholar 

  16. Cremmer, E., Ferrara, S., Girardello, L., Van Proeyen, A.: Yang-Mills theories with local supersymmetry: Lagrangian, transformation laws and super-Higgs effect. Nucl. Phys. B. 212, 413 (1983)

    Article  ADS  Google Scholar 

  17. Alvarez-Gaume, L., Freedman, D.Z.: Geometrical structure and ultraviolet finiteness in the supersymmetric sigma model. Commun. Math. Phys. 80, 443 (1981)

    Article  ADS  Google Scholar 

  18. Bagger, J., Witten, E.: Matter couplings in \(N=2\) supergravity. Nucl. Phys. B. 222, 1 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  19. de Wit, B., Tollsten, A.K., Nicolai, H.: Locally supersymmetric \(D=3\) nonlinear sigma models. Nucl. Phys. B. 392, 3–38 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  20. de Wit, B., Berger, I., Samtleben, H.: Gauged locally supersymmetric \(D=3\) nonlinear sigma models. Nucl. Phys. B. 671, 175–216 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Berger, M.: Sur les groupes d’holonomie des variétés à connexion affine et des variétés riemanniennes. Bull. Soc. Math. Fr. 83, 279–330 (1955)

    Article  MATH  Google Scholar 

  22. Simons, J.: On transitivity of holonomy systems. Ann. Math. 76, 213–234 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  23. Helgason, S.: Differential Geometry. Academic Press, Lie groups and symmetric spaces (1978)

    MATH  Google Scholar 

  24. Cremmer, E., Julia, B.: The SO(8) supergravity. Nucl. Phys. B. 159, 141–212 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  25. Witten, E.: Constraints on supersymmetry breaking. Nucl. Phys. B. 202, 253–316 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  26. Gibbons, G.W., Hull, C.M., Warner, N.P.: The stability of gauged supergravity. Nucl. Phys. B. 218, 173 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  27. Hull, C.M.: The positivity of gravitational energy and global supersymmetry. Commun. Math. Phys. 90, 545 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  28. Nester, J.A.: A new gravitational energy expression with a simple positivity proof. Phys. Lett. A. 83, 241–242 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  29. Nester, J.A.: Positivity of the Bondi gravitational mass. Phys. Lett. A. 85, 259–260 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  30. Witten, E.: A new proof of the positive energy theorem. Commun. Math. Phys. 80, 381–402 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Weinberg, S., Witten, E.: Limits on massless particles. Phys. Lett. B. 96, 59–62 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  32. Postnikov, M.M.: Lectures in geometry: Lie groups and Lie algebras. Editorial URSS (1994)

    Google Scholar 

  33. Cremmer, E., Julia, B., Scherk, J.: Supergravity theory in 11 dimensions. Phys. Lett. B. 76, 409–412 (1978)

    Article  ADS  MATH  Google Scholar 

  34. Campbell, L.C., West, P.C.: \(N=2\)\(d=10\) nonchiral supergravity and its spontaneous compactification. Nucl. Phys. B. 243, 112–124 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  35. Giani, F., Pernici, M.: \(N=2\) supergravity in ten dimensions. Phys. Rev. D. 30, 325–333 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  36. Howe, P., West, P.C.: The complete \(N=2\)\(d=10\) supergravity. Nucl. Phys. B. 238, 181–219 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  37. Chapline, G., Manton, N.S.: Unification of Yang-Mills theory and supergravity in ten dimensions. Phys. Lett. B. 120, 124–134 (1983)

    Article  MathSciNet  Google Scholar 

  38. Huq, M., Namazie, M.A.: Kaluza-Klein supergravity in ten dimensions. Class. Quantum Grav. 2, 293–308 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Duff, M.J., Nilsson, B.E.W., Pope, C.N.: Kaluza-Klein supergravity. Phys. Rep. 130, 1–142 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  40. Romans, L.J.: Massive \(N=2A\) supergravity in ten dimensions. Phys. Lett. B. 169, 374–380 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  41. Coleman, S.R.: More about the massive Schwinger model. Ann. Phys. 101, 239 (1976)

    Article  ADS  Google Scholar 

  42. Tsimpis, D.: Massive IIA supergravities. JHEP. 10, 057 (2005). ar**v:hep-th/0508214

    Article  ADS  MathSciNet  Google Scholar 

  43. Schwarz, J.H.: Covariant field equations of chiral \(N=2\)\(D=10\) supergravity. Nucl. Phys. B. 266, 269–288 (1983)

    Article  ADS  Google Scholar 

  44. Howe, P., West, P.C.: The complete \(N=2\), \(d=10\) supergravity. Nucl. Phys. B238, 181–219 (1984)

    Google Scholar 

  45. Bergshoeff, E., Hull, C., Ortín, T.: Duality in the type-II superstring effective action. Nucl. Phys. B. 451, 547–575 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Bergshoeff, E., Boonstra, H.J., Ortín, T.: \(S\) duality and dyonic \(p\)-branes in type II string theory. Phys. Rev. D. 53, 7206–7212 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  47. Belov, D., Moore, G.W.: Holographic action for the self-dual field. ar**v:hep-th/0605038

  48. Bergshoeff, E., de Roo, M., de Wit, B., van Nieuwenhuizen, P.: Ten-dimensional Maxwell-Einstein supergravity, its currents, and the issue of auxiliary fields. Nucl. Phys. B. 195, 97–136 (1982)

    Article  ADS  MATH  Google Scholar 

  49. Chapline, G., Manton, N.S.: Unification of Yang-Mills theory and supergravity in ten dimensions. Phys. Lett. 120B, 105–109 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  50. Ortín, T.: Gravity and strings, Cambridge Monographs on Mathematical Physics. Cambridge University Press (2015)

    Google Scholar 

  51. M. Duff, Supermembranes, in Fields, strings, and duality, TASI 1996 eds. C. Efthimiou & B. Greene pp. 219-220, World-Scientific 1997, ar**v:hep-th/9611203

  52. Stelle, K.S.: BPS Branes in supergravity. ar**v:hep-th/9803116

  53. Duff, M.J., Khuri, R.R., Lu, J.X.: String solitons. Phys. Rep. 259, 213–325 (1995). ar**v: hep-th/9412184

    Article  ADS  MathSciNet  Google Scholar 

  54. Stephani, H., Kramer, D., Maccallum, M., Hoenselaers, C., Herlt, E.: Exact solutions to Einstein’s field equations, Second edition. Cambridge University Press (2003)

    Google Scholar 

  55. Brennan, T.D., Carta, F., Vafa, C.: The string landscape, the swampland, and the missing corner. ar**v:1711.00864

  56. D’Inverno, R.: Introducing Einstein’s Relativity. Oxford University Press (1992)

    Google Scholar 

  57. Wald, R.M.: General Relativity. University of Chicago Press (1984)

    Google Scholar 

  58. Horowitz, G.T., Strominger, A.: Black strings and \(p\)-branes. Nucl. Phys. B360, 197 (1991)

    Google Scholar 

  59. Penrose, R.: Singularities and time-asymmetry. In: Hawking, S.W., Israel, W. (eds.) General Relativity. An Einstein centenary survey. Cambridge University Press (1979)

    Google Scholar 

  60. Penrose, R.: The question of cosmic censorship. J. Astrophys. Astron. 20, 233–248 (1999)

    Article  ADS  Google Scholar 

  61. Prvanović, M.: On warped product manifolds. In: Conference “Filomat ’94” (Niš, 1994). Filomat 9 part 2 (1995) 169–185

    Google Scholar 

  62. Lu, H., Pope, C.N., Sezgin, E., Stelle, K.S.: Stainless super p-branes. Nucl. Phys. B. 456, 669–698 (1995). ar**v:hep-th/9508042

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Bergshoeff, E., Kallosh, R., Ortin, T., Roest, D., van Proeyen, A.: New formulations of \(D=10\) supersymmetry and D8–O8 domain walls. Class. Quantum. Grav. 18, 3359–3382 (2001). ar**v:hep-th/0103233

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. Fukuma, M., Oda, T., Tanaka, H.: Comments on T-Dualities of Ramond-Ramond potentials on tori. Prog. Theor. Phys. 103, 425–466 (2000). ar**v:hep-th/9907132

    Article  ADS  Google Scholar 

  65. Dirac, P.A.M.: Quantised singularities in the electromagnetic field. Proc. Roy. Soc. Lond. A. 133, 60–72 (1931)

    Article  ADS  MATH  Google Scholar 

  66. Coleman, S.R.: The magnetic monopole fifty years later, Proceedings Les Houches Summer School in Theoretical Physics: Gauge Theories in High Energy Physics. Les Houches 1982, 461–552 (1981)

    Google Scholar 

  67. Chern, S.S.: Complex manifolds without potential theory (with an Appendix in the Geometry of Characteristic Classes). Springer (1979)

    Google Scholar 

  68. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley (1978)

    Google Scholar 

  69. Hirzebruch, F.: Topological methods in Algebraic Geometry, Classical in Mathematics. Springer (1995)

    Google Scholar 

  70. Husemoller, D.: Fibre Bundles, third edition, Graduate Texts in Mathematics 20. Springer (1994)

    Google Scholar 

  71. Milnor, J.W., Stasheff, J.D.: Characteristic Classes. Princeton University Press (1974)

    Google Scholar 

  72. Duff, M.J., Stelle, K.S.: Multi-membrane solutions of \(D=11\) supergravity. Phys. Lett. B. 253, 113–118 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. Lu, J.X.: ADM masses for black strings and \(p\)-branes. Phys. Lett. B. 313, 29–34 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  74. Berard-Bergery, L., Ikenakhen, A.: On the holonomy of Lorentzian manifolds. In: Differential Geometry: Geometry in Mathematical Physics and related topics. American Mathematical Society (1993)

    Google Scholar 

  75. Galaev, A.: Isometry groups of Lobachewskian spaces, similarity transformations of Euclidean spaces and Lorentzian holonomy groups. Rend. Circ. Mat. Palermo. 79, 87–97 (2006)

    MathSciNet  MATH  Google Scholar 

  76. Leistner, T.: Towards a classification of Lorentzian holonomy groups. J. Diff. Geom. 76, 423–484 (2007). ar**v:math/0305139

    MATH  Google Scholar 

  77. Leistner, T.: Towards a classification of Lorentzian holonomy groups. Part II: semisimple, non-simple weak-Berger algebras. J. Differ. Geom. 76, 423–484 (2007). ar**v:math/0309274

  78. Brinkmann, H.W.: Einstein spaces which are mapped conformally on each other. Math. Ann. 94, 119–145 (1925)

    Article  MathSciNet  MATH  Google Scholar 

  79. Cahen, M., Wallach, N.: Lorentzian symmetric spaces. Bull. AMS. 76, 585–591 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  80. Penrose, R.: Any space-time has a plane wave as a limit. In: Differential Geometry and Relativity, pp. 271–275. Reidel, Dordrecht (1976)

    Google Scholar 

  81. Güven, R.: Plane wave limits and T-duality. Phys. Lett. B. 482, 255–263 (2000). ar**v:hep-th/0005061

    Article  ADS  MathSciNet  MATH  Google Scholar 

  82. Blau, M., Figueroa-O’Farrill, J.M., Hull, C., Papadopoulos, G.: Penrose limits and maximal supersymmetry. Class. Quant. Grav. 19, L87–L95 (2002). ar**v:hep-th/0201081

    Article  ADS  MathSciNet  MATH  Google Scholar 

  83. Blau, M., Figueroa-O’Farrill, J.M., Papadopoulos, G.: Penrose limits, supergravity and brane dynamics. Class. Quant. Grav. 19, 4753 (2002). ar**v:hep-th/0202111

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. Blau, M., Borunda, M., O’Loughlin, M., Papadopoulos, G.: Penrose limits and space-time singularities. Class. Quant. Grav. 21, L43 (2004). ar**v:hep-th/0312029

    Article  ADS  MATH  Google Scholar 

  85. Maldacena, J.M., Maoz, L.: Strings on \(pp\) waves and massive two-dimensional field theories. JHEP. 12, 046 (2002). ar**v:hep-th/0207284

    Article  ADS  MathSciNet  Google Scholar 

  86. Metsaev, R.R.: Type IIB Green-Schwarz superstring in plane wave Ramond-Ramond background. Nucl. Phys. B. 625, 70 (2002). ar**v:hep-th/0112044

    Article  ADS  MathSciNet  MATH  Google Scholar 

  87. Figueroa-O’Farrill, J.M., Papadopoulos, G.: Homogeneous fluxes, branes and a maximally supersymmetric solution of M-theory. J. High Energy Phys. 06, 036 (2001). ar**v:hep-th/0105308

    Article  MathSciNet  Google Scholar 

  88. Kowalski-Glikman, J.: Vacuum states in supersymmetric Kaluza-Klein theory. Phys. Lett. 134B, 194–196 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  89. Blau, M., Figueroa-O’Farrill, J.M., Hull, C.M., Papadopoulos, G.: A new maximally supersymmetric background of type IIB superstring theory. ar**v:hep-th/0110242

  90. Berkovits, N., Maldacena, J.: \(N=2\) superconformal description of superstring in Ramond-Ramond plane wave backgrounds. JHEP. 0210, 059 (2002). ar**v:hep-th/0208092

    Article  ADS  MathSciNet  Google Scholar 

  91. Russo, J.G., Tseytlin, A.A.: ar**v:hep-th/0208114

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Cecotti .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cecotti, S. (2023). Low-Energy Effective Theories. In: Introduction to String Theory. Theoretical and Mathematical Physics. Springer, Cham. https://doi.org/10.1007/978-3-031-36530-0_8

Download citation

Publish with us

Policies and ethics

Navigation