Calabi–Yau Compactifications

  • Chapter
  • First Online:
Introduction to String Theory

Part of the book series: Theoretical and Mathematical Physics ((TMP))

  • 1013 Accesses

Abstract

We study a large class of exact superstring vacua obtained by compactifying a 10d SUSY string down to 4d on Riemannian spaces of SU(3) holonomy a.k.a. Calabi–Yau (CY) 3-folds. These vacua are invariant under 4d Poincaré symmetry and one-quarter of the original supersymmetries. We discuss their deep geometry and physics, aiming to be didactical but also mathematically precise and self-contained. We review all geometry we need. One may study these vacua from three viewpoints:

(a):

in Algebro-Geometric terms, exploiting the description of the Calabi–Yau spaces as complex projective varieties. The main tool here is Griffiths’ theory of variations of Hodge structures (VHS) [1,2,3];

(b):

in terms of the Zamolodchikov geometry of the (2,2) SCFT living on the string world-sheet. Here the main tool is \(tt^*\) geometry [4,5,6];

(c):

in terms of their low-energy effective 4d \(\mathcal {N}=2\) SUGRA. The main tool here is “special Kähler geometry” [7,8,9,10,11,12].

These three approaches, despite the difference of languages, perspectives, and tools, turn out to be essentially equivalent [13].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 137.14
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    That is, a tensor in \(\mathbb {R}^n\) with the index structure \({T^{b_1b_2\cdots b_k}}_{a_1a_2\cdots a_\ell }\) with \(a_s,b_t=1,2,\dots , n\).

  2. 2.

    Properly speaking, this is the restricted holonomy groups, i.e. its connected component.

  3. 3.

    Recall that the Chern connection [22] is the unique connection on a holomorphic vector bundle with a Hermitian fiber metric which is both holomorphic and metric.

  4. 4.

    For more details see [24, 25]. For a readable summary for physicists see Chap. 3 of [7].

  5. 5.

    Here and below parallel stands for covariantly constant with respect to the Levi-Civita connection.

  6. 6.

    Here \(\Gamma ^i\) are Dirac matrices acting on a spin bundle S on the manifold M and \(\Gamma ^{ij}\equiv \tfrac{1}{2}[\Gamma ^i,\Gamma ^j]\). The generators of \(\mathfrak {spin}(\dim M)\) acting on a spinor \(\psi \in C^\infty (M,S)\) are the Dirac matrices \(\tfrac{1}{2}\Gamma ^{ij}\).

  7. 7.

    Indeed the spectrum of U(1) charges q of the states (11.15) should be symmetric under \(q\rightarrow -q\), and this fixes the charge of \(\psi _0\) to be \(-m/2\).

  8. 8.

    This is clear from the fact that a strict QK manifold is Einstein with a non-zero cosmological constant—hence has no parallel spinor by Theorem 11.6. A Ricci-flat QK manifold is hyperKähler.

  9. 9.

    A \(G_2\)-manifold has odd dimension (7) and there is no notion of chirality for parallel spinors.

  10. 10.

    The overbar stands for complex conjugation.

  11. 11.

    That is, a U(n)-structure, possibly with a torsion, whose underlying \(GL(n,\mathbb {C})\)-structure admits a torsionless connection.

  12. 12.

    Recall from BOX 1.6 that the Picard group \(\textsf{Pic}(X)\) is the group of isomorphism classes of line bundles \(L\rightarrow X\). For X smooth, it is also the group of divisors on X modulo linear equivalence.

  13. 13.

    By definition \(\mathcal {K}\) is a convex cone iff \(\omega _1,\omega _2\in \mathcal {K}\) implies \(\lambda _1 \omega _1+\lambda _2\omega _2\in \mathcal {K}\) for all \(\lambda _1,\lambda _2\in \mathbb {R}_{>0}\). It is strict if, in addition, \(0\ne \omega \in \mathcal {K}\) implies \(-\omega \not \in \mathcal {K}\).

  14. 14.

    A smooth function \(\Phi \) on a complex manifold is pluri-subharmonic iff the matrix \(\partial _j\partial _{\bar{k}}\Phi \) is non-negative [54]. In particular, a global Kähler potential (when it exists) is pluri-subharmonic.

  15. 15.

    With the condition that \((X,\mathcal {O}_X)\) is locally isomorphic to \((\mathbb {C}^n,\mathcal {O}_{\mathbb {C}^n})\) as a locally ringed space [55, 56], i.e. a complex manifold is locally modeled by \(\mathbb {C}^n\) with its local holomorphic functions.

  16. 16.

    We write \(\Lambda ^{p,q}(\mathcal {V})\) for the space of smooth forms of type (pq) on \(X_0\) with coefficients in the holomorphic vector bundle \(\mathcal {V}\) [22] and simply \(T^{1,0}\) for the holomorphic tangent bundle \(T^{1,0}X_0\).

  17. 17.

    Warning. Here we are oversimplifying; for a precise treatment of m-CY, see [57,58,59].

  18. 18.

    For more details see e.g. [7].

  19. 19.

    The moduli space \(\mathcal {M}\), Eq. (11.69), has orbifold singularities. E.g. the 1-CY are elliptic curves, \(\mathcal {S}\) is the upper half-plane \(\mathcal {H}\), which is smooth, while \(\mathcal {M}_1=\mathcal {H}/SL(2,\mathbb {Z})\) has two orbifold points i, \(e^{2\pi i/3}\) fixed by (conjugacy classes of) finite subgroups of the modular group.

  20. 20.

    Indeed a locally symmetric space which is Ricci-flat is flat.

  21. 21.

    Through this chapter we see the bosonic configurations of the \(\sigma \)-model as maps \(\phi :\Sigma \rightarrow M\).

  22. 22.

    Complex manifolds of the form \(\{Z\in \mathbb {C}^n:\textrm{Im}\, Z\in V\}\) with \(V\subset \mathbb {R}^n\) a strict, convex cone are called tube domains or Siegel domains of the first kind [69]. 

  23. 23.

    By a Riemannian product we mean a product \(M_1\times M_2\) of manifolds equipped with the metric \(ds^2=ds_1^2+ds_2^2\) where \(ds_a^2\) is a Riemannian metric on \(M_a\) (\(a=1,2\)).

  24. 24.

    We are cheating a little bit: \(\widetilde{\mathcal {C}}\) is non-complete in the Zamolodchikov metric \(G_{ij}\). Perturbing \(G_{ij}\) by its Ricci tensor, \(G_{ij}\rightarrow G_{ij}+\epsilon R_{ij}\), we get a metric satisfying the conditions of the Theorem.

  25. 25.

    We stress that the distinction chiral vs. twisted-chiral is a matter of conventions.

  26. 26.

    Recall from Chap. 2 the notion of superconformal superfields: not all superfields are superconformal superfields. The chiral primaries are first components of superconformal superfields. More specifically, a general NS chiral state \(|\psi \rangle \) satisfies \(G^+_{-1/2}|\psi \rangle =0\), while a primary chiral state satisfies \(G^-_{+1/2}|\psi \rangle =G^+_{-1/2}|\psi \rangle =0\). A non-zero state of the form \(G^+_{-1/2}|\eta \rangle \) is a chiral descendent.

  27. 27.

    Notation. \(A_A\) (resp. \({}_AA\)) denotes the algebra A seen as a right (resp. left) module over itself. \(D(-)=\textrm{Hom}_\mathbb {C}(-,\mathbb {C})\) is the “classical” duality in the category of vector spaces over \(\mathbb {C}\). D maps right modules into left modules and left ones and viceversa. One has \(D^2=\textrm{Id}\).

  28. 28.

    Super-commutative means that the elements of the ring are distinguished in bosonic and fermionic; the bosonic ones commute and the fermionic ones anti-commute. Unital means that the algebra contains an identity element 1.

  29. 29.

    “Chiral” has two different meanings in this discussion. The reader should not confuse the two.

  30. 30.

    Note that the rhs of (11.141) is independent of \(z,\bar{z}\).

  31. 31.

    To simplify the notation, here and below TX (resp. \(T^*X\)) stands for the holomorphic tangent (resp. cotangent) bundle of vectors (resp. forms) of type (1, 0), \(T^*X=(TX)^\vee \).

  32. 32.

    Note that at weak coupling the operators (11.154), (11.155) saturate the unitarity bound \(h=|q|/2\) and so are chiral primaries; then they belong to short SUSY protected supermultiplets and their existence, quantum numbers, and dimensions are preserved even at strong coupling. The only aspect which may be renormalized by the world-sheet interactions is their product table.

  33. 33.

    The conventions were chosen to avoid clashes between the two meanings of the symbol q.

  34. 34.

    For an axiomatic approach to TFT see e.g. [74].

  35. 35.

    The gravitino vertices are the \(\gamma \)-traceless part of (11.174); the \(\gamma \)-traces are vertices for dilatini.

  36. 36.

    Not to be confused with the 10d one.

  37. 37.

    Although for \(H^1(X, T^*X)\) the identification is exact only at weak coupling, the counting of states is exact for all couplings since these states form short SUSY representations.

  38. 38.

    MUM=maximally unipotent monodromy [2]; physically it is the group of unitary automorphisms of the Lorentz algebra \(\mathfrak {spin}(3,1;\mathbb {R})\).

  39. 54.

    The subgroup \(U(h)\times U(1)\subset \textit{Sp}(2h+2,\mathbb {R})\) is compact, so contained in a maximal compact subgroup \(U(h+1)\subset \textit{Sp}(2h+2,\mathbb {R})\). The canonical projection \(\varpi :D_h\rightarrow \mathcal {H}_{h+1}\) maps an equivalence class modulo \(U(h)\times U(1)\) to the coarser equivalence class modulo the bigger group \(U(h+1)\).

  40. 55.

    A priori it is just a classical Poincaré invariant vacuum; but now the theory is supersymmetric, and no classical vacuum is lifted by quantum effects. So our vacua are actual quantum vacua.

  41. 56.

    For homogeneous bundles over Griffiths period domains see [7] or the original literature [114].

  42. 57.

    As a matter of notation, X represents the underlying smooth space stripped of the complex structure. \(X_s\) for \(s\in \mathcal {M}\) stands for the manifold endowed with the complex structure s.

  43. 58.

    The extend \(\mathcal {L}_\text {eff}\) is exact is specified by the SUSY non-renormalization theorems.

  44. 59.

    A vertical bar | stands for restriction of the differential form to the CY fiber.

  45. 60.

    For the notion of contact structure see [19] or [117, 118].

  46. 61.

    That is, satisfying the obvious transversality conditions.

  47. 62.

    The following statements hold for some sufficiently generic duality frame. The choice of a “good” frame may be obstructed if the SUGRA is gauged.

  48. 63.

    Since the considerations are strictly local, we do not distinguish between \(\mathcal {M}\) and its cover \(\widetilde{\mathcal {M}}\).

References

  1. Griffiths, P.: Topics in Transcendental Algebraic Geometry. Princeton University Press (1984)

    Google Scholar 

  2. Carlson, J., Müller-Stach, S., Peters, C.: Period Map**s and Period Domains. Cambridge Studies in Advanced Mathematics, vol. 168, 2nd edn. Cambridge University Press, Cambridge (2017)

    Google Scholar 

  3. Voisin, C.: Hodge Theory and Complex Algebraic Geometry, vols. I & II. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  4. Cecotti, S., Vafa, C.: Topological antitopological fusion. Nucl. Phys. B 367, 359–461 (1991)

    Article  ADS  MATH  Google Scholar 

  5. Cecotti, S., Vafa, C.: On classification of \(N=2\) supersymmetric theories. Commun. Math. Phys. 158, 569–644 (1993). ar**v:hep-th/9211097

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Cecotti, S., Gaiotto, D., Vafa, C.: \(tt^*\) geometry in 3 and 4 dimensions. JHEP 05, 055 (2014). ar**v:1312.1008

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Cecotti, S.: Supersymmetric Field Theories. Geometric Structures and Dualities. Cambridge University Press, Cambridge (2015)

    MATH  Google Scholar 

  8. Freedman, D., van Proeyen, A.: Supergravity. CUP (2012)

    Google Scholar 

  9. Freed, D.S.: Special Kähler manifolds. Commun. Math. Phys. 302, 31–52 (1999)

    Article  ADS  MATH  Google Scholar 

  10. Cecotti, S., Ferrara, S., Girardello, L.: Geometry of type II superstrings and the moduli of superconformal field theories. Int. J. Mod. Phys. A 4, 2475 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Cecotti, S.: \(N=2\) Supergravity, type IIB superstrings and algebraic geometry. Commun. Math. Phys. 131, 517–536 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Strominger, A.: Special geometry. Commun. Math. Phys. 133, 163–180 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Cecotti, S.: Swampland geometry and the gauge couplings. JHEP 09, 136 (2021). ar**v:2102.03205

  14. Candelas, P., Horowitz, G.T., Strominger, A., Witten, E.: Vacuum configurations for superstrings. Nucl. Phys. B 258, 46–74 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  15. A. Strominger, E. Witten New manifolds for superstring compactification, Commun. Math. Phys. 101 (1985) 341

    Google Scholar 

  16. Witten, E.: New issues in manifolds of \(SU(3)\) holonomy. Nucl. Phys. B 283, 79 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  17. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vols. 1 and 2. Wiley, New York (1963)

    Google Scholar 

  18. Taubes, C.H.: Differential Geometry. Bundles, Connections, Metrics and Curvature. Oxford Graduate Texts in Mathematics, vol. 23. Oxford University Press, Oxford (2011)

    Google Scholar 

  19. Kobayashi, S.: Transformation groups in Differential Geometry. Classics in Mathematics. Springer, Berlin (1995)

    MATH  Google Scholar 

  20. Huybrechts, D.: Complex Geometry. Universitext, An Introduction. Springer, Berlin (2005)

    MATH  Google Scholar 

  21. Postnikov, M.M.: Geometry VI. Riemannian Geometry. Encyclopaedia Mathematical Sciences, vol. 91. Springer, Berlin (2001)

    Google Scholar 

  22. Kobayashi, S.: Differential Geometry of Complex Vector Bundles. Princeton University Press, Princeton (1987)

    Book  MATH  Google Scholar 

  23. Besse, A.: Einstein Manifolds. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  24. Joyce, D.D.: Compact Manifolds with Special Holonomy. Oxford Mathematical Monographs. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  25. Joyce, D.D.: Riemannian Holonomy Groups and Calibrated Geometry. Oxford Graduate Texts in Mathematics, vol. 12. Oxford University Press, Oxford (2007)

    Google Scholar 

  26. Helgason, S.: Differential Geometry. Lie Groups and Symmetric Spaces. Academic, New York (1978)

    MATH  Google Scholar 

  27. Lerche, W., Vafa, C., Warner, N.P.: Chiral rings in \(N=2\) superconformal theories. Nucl. Phys. B 324, 427 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  28. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (1978)

    MATH  Google Scholar 

  29. Chern, S.S.: Complex Manifolds Without Potential Theory (with an Appendix in the Geometry of Characteristic Classes). Springer, Berlin (1979)

    Book  MATH  Google Scholar 

  30. Goldberger, S.I.: Curvature and Homology. Dover, Mineola (1982)

    Google Scholar 

  31. Cecotti, S.: \(N=2\) Landau-Ginzburg versus Calabi-Yau sigma models: nonperturbative aspects. Int. J. Mod. Phys. A 6, 1749–1814 (1991)

    Article  ADS  MATH  Google Scholar 

  32. Cecotti, S.: Geometry of \(N=2\) Landau-Ginzburg families. Nucl. Phys. B 355, 755–776 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  33. Barth, W., Hulek, K., Peter, C., van de Ven, A.: Compact Complex Surfaces. 2nd edn. Erg. der Math. und ihrer Grenzgebiete, 3. Folge, Band 4. Springer, Berlin (2004)

    Google Scholar 

  34. Joyce, D.D.: Riemannian Holonomy Groups and Calibrated Geometry. OUP (2007)

    Google Scholar 

  35. Beauville, A.: Variétés Kähleriennes dont la primière classe de Chern est nulle. J. Diff. Geom. 18, 755–782 (1983)

    MATH  Google Scholar 

  36. Oguiso, K., Sakurai, J.: Calabi-Yau threefolds of quotient type. Asian J. Math. 5 (2001). ar**v:math/9909175

  37. Hashimoto, K., Kanazawa, A.: Calabi-Yau threefolds of type K (I): classification. ar**v:1409.7601

  38. Hashimoto, K., Kanazawa, A.: Calabi-Yau threefolds of type K (II): mirror symmetry. ar**v:1511.08778

  39. Hirzebruch, F.: Topological Methods in Algebraic Geometry. Classical in Mathematics. Springer, Berlin (1995)

    MATH  Google Scholar 

  40. Milnor, J.W., Stasheff, J.D.: Characteristic Classes. Princeton University Press, Princeton (1974)

    Book  MATH  Google Scholar 

  41. Freedman, M.H.: The topology of four-dimensional manifolds. J. Differ. Geometry 17, 357–453 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  42. Freedman, M.H., Quinn, F.: (1990), Topology of 4-Manifolds. Princeton University Press, Princeton (1990)

    MATH  Google Scholar 

  43. Kodaira, K.: On the structure of compact complex analytic surfaces. I. Amer. J. Math. 86, 751–798 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  44. Huybrechts, D.: Lectures on K3 Surfaces. Cambridge University Press, Cambridge (2016)

    Book  MATH  Google Scholar 

  45. Hübsch, T.: Calabi-Yau Manifolds: A Bestiary for Physicists. World Scientific, Singapore (1992)

    Book  MATH  Google Scholar 

  46. Meyer, C.: Modular Calabi–Yau Threefolds. Fields Institute Monographs, vol. 22. AMS, Calgary (2005)

    Google Scholar 

  47. Bao, J., He, Y.H., Hirst, E., Pietromonaco, S.: Lectures on the Calabi-Yau Landscape. ar**v:2001.01212

  48. Brennan, T.D., Carta, F., Vafa, C.: The string landscape, the swampland, and the missing corner. ar**v:1711.00864

  49. Kodaira, K.: Complex Manifolds and Deformations of Complex Structures. Springer, New York (1986)

    Book  MATH  Google Scholar 

  50. Warner, F.W.: Foundations of Differential Manifolds and Lie Groups. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  51. Yau, S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampere equation. I. Commun. Pure Appl. Math. 31, 339–411 (1978)

    Article  MATH  Google Scholar 

  52. Peters, C.A.M., Steenbrink, J.H.M.: Monodromy of variations of Hodge structure. Acta Appl. Math. 75, 183–194 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  53. Hironaka, H.: Resolution of singularities of an algebraic variety of characteristic zero. Ann. Math. 79, 109–326 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  54. Lelong, P.: Fonctions Plurisousharmoniques et Formes différentielles positives. Gordon and Breach, Philadelphia (1969)

    MATH  Google Scholar 

  55. Grauert, H., Remmert, R.: Coherent Analytic Sheaves. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  56. Neeman, A.: Algebraic and Analytic Geometry. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  57. Chen, X., Liu, K., Shen, Y.: Global Torelli theorem for projective manifolds of Calabi-Yau type. ar**v:1205.4207v3

  58. Liu, K., Shen, Y.: Hodge metric completion of the moduli space of Calabi-Yau manifolds. ar**v:1305.0231

  59. Liu, K., Shen, Y.: From local Torelli to global Torelli. ar**v:1512.08384

  60. Tian, G.: Smoothness of the universal deformation space of compact Calabi-Yau manifolds and Petersson-Weil metric. In: Yau, S.T. (ed.) Mathematical Aspects of String Theory, pp. 629–645. World Scientific, Singapore (1987)

    Chapter  Google Scholar 

  61. Wang, C.-L.: On the incompleteness of the Weil-Petersson metric along degenerations of Calabi-Yau manifolds. Math. Res. Lett. 4, 157–171 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Cecotti, S.: Special geometry and the swampland. JHEP 09, 147 (2020). ar**v:2004.06929

    Google Scholar 

  63. Grisaru, M.T., Van de Ven, A.E.M., Zanon, D.: Four-loop \(\beta \)-function for the \(N = 1\) and \(N = 2\) supersymmetric non-linear sigma model in two dimensions. Phys. Lett. B 173, 423–428 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  64. Alvarez-Gaume, L., Freedman, D.Z.: Geometrical structure and ultraviolet finiteness in the supersymmetric sigma model. Commun. Math. Phys. 80, 443 (1981)

    Article  ADS  Google Scholar 

  65. Adler, S.L., Bardeen, W.A.: Absence of higher order corrections in the anomalous axial vector divergence. Phys. Rev. 182, 1517 (1969)

    Article  ADS  Google Scholar 

  66. Adler, S.L.: Anomalies to all orders. In: ’t Hooft, G., (ed.), Fifty Years of Yang-Mills Theory, pp. 187–228. World Scientific, Singapore (2005). ar**v:hep-th/0405040

  67. Dine, M., Seiberg, N.: Nonrenormalization theorems in superstring theory. Phys. Rev. Lett. 57, 2625–2628 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  68. Zamolodchikov, A.B.: Irreversibility of the flux of the renormalization group in 2D field theory. JETP Lett. 43, 730–732 (1986)

    ADS  MathSciNet  Google Scholar 

  69. Gindikin, S.G., Pjateckii-Sapiro, I.I., Vinberg, E.B.: Classification and canonical realization of complex bounded homogeneous domains. In: Transactions of the Moscow Mathematical Society for the Year 1963, pp. 404–437. AMS, Calgary (1965)

    Google Scholar 

  70. Hori, K., Katz, S., Klemm, A., Pandharipande, R., Thomas, R., Vafa, C., Vakil, R., Zaslow, E.: Mirror Symmetry. Clay Mathematics Monographs, vol. 1. AMS, Clay Mathematical Institute (2003)

    Google Scholar 

  71. Skowronśki, A.: Periodicity in representation theory of algebras. https://webusers.imj-prg.fr/~bernhard.keller/ictp2006/lecturenotes/skowronski.pdf

  72. Keller, B.: Derived categories and tilting. In: Angeleri Hügel, L., Happel, D., Krause, H., (eds.), Handbook of Tilting Theory. London Mathematical Society Lecture Note Series, vol. 332. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  73. Frölich, A., Taylor, M.J.: Algebraic Number Theory. Cambridge Studies in Adavanced Mathematics, vol. 27. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  74. Anspinwall, P.S., Bridgeland, T., Craw, A., Douglas, M.R., Gross, M., Kapustin, A., Moore, G.W., Segal, G., Szendrói, B., Wilson, P.M.H.: Dirichlet Branes and Mirror Symmetry. Clay Mathematical Monographs, vol. 4. AMS, Calgary (2009)

    Google Scholar 

  75. Dubrovin, B.: Geometry of 2-D Topological Field Theories. Lectures Notes in Matematics 1620, 120–348 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  76. Witten, E.: Topological quantum field theory. Commun. Math. Phys. 117, 411–449 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. Witten, E.: Mirror manfolds and topological field theory. In: Yau, S.-T. (ed.) Essays on Mirror Manifolds. International Press, Vienna (1992)

    Google Scholar 

  78. Labastida, J., Marino, M.: Topological Quantum Field Theory and Four Manifolds. Springer, Berlin (2005)

    MATH  Google Scholar 

  79. Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry in two-dimensional Quantum Field Theory. Nucl. Phys. B 241, 333–380 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. Di Francesco, P., Mathieu, P., Sánéchal, D.: Conformal Field Theory. Springer, Berlin (1997)

    Book  Google Scholar 

  81. Boucher, W., Friedan, D., Kent, A.: Determinant formulae and unitarity for the \(N=2\) superconformal algebras in two dimensions or exact results on string compactification. Phys. Lett. B172 316

    Google Scholar 

  82. Zamolodchikov, A.B., Fadeev, V.A.: Disorder fields in two-dimensional conformal quantum field theory and \(N=2\) extended supersymmetry. Sov. Phys. JETP 63 913

    Google Scholar 

  83. Qiu, Z.: Nonlocal current algebra and \(N=2\) superconformal field theory in two dimensions. Phys. Lett. B 188, 207 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  84. Gepner, D.: Spacetime supersymmetry in compactified string theory and superconformal models. Nucl. Phys. B 296, 757 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  85. Gepner, D.: Exactly solvable string compactifications on manifolds of \(SU(N)\) holonomy. Phys. Lett. B 199, 380–388 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  86. Vafa, C.: String vacua and orbifoldized LG models. Mod. Phys. Lett. A4 1169

    Google Scholar 

  87. Morrison, D.R.: Compactifications of moduli spaces inspired by mirror symmetry. Journées de Géometrie Algébrique, Orsay 1992, ed. A. Beauville, Ast?erisque. ar**v:alg-geom/9304007

  88. Morrison, D.R.: Where is the large radius limit?. ar**v:hep-th/9311049

  89. Hori, K., Vafa, C.: Mirror symmetry. ar**v:hep-th/0002222

  90. Yau, S.-T. (ed.): Essays on Mirror Manifolds. International Press, Vienna (1992)

    MATH  Google Scholar 

  91. Candelas, P., de la Ossa, X.C., Green, P.S., Parkes, L.: A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory. Nucl. Phys. B 359, 21 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  92. Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Holomorphic anomalies in topological field theories. Nucl. Phys. B 405, 279–304 (1993). ar**v:hep-th/9302103

    Article  ADS  MathSciNet  MATH  Google Scholar 

  93. Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes. Commun. Math. Phys. 165, 311–428 (1994). ar**v:hep-th/9309140

    Article  ADS  MathSciNet  MATH  Google Scholar 

  94. Katz, S.: Enumerative geometry and string theory. Student Mathematical Library. IAS/Park City Mathematical Subseries, vol. 32. AMS/IAS (2006)

    Google Scholar 

  95. Barbieri, R., Nanopoulos, D.V.: An exceptional model for grand unification. Phys. Lett. B 91, 369–375 (1980)

    Article  ADS  Google Scholar 

  96. Witten, E.: Superstring perturbation theory via super-Riemann surfaces: an overview. ar**v:1304.2832

  97. Denef, F.: Les Houches lectures on constructing string vacua. Les Houches 87, 483–610 (2008). ar**v:0803.1194

    Article  Google Scholar 

  98. Tomasiello, A.: Geometry of String Theory Compactifications. Cambridge University Press, Cambridge (2022)

    Book  MATH  Google Scholar 

  99. Shatashvili, S.L., Vafa, C.: Superstrings and manifold of exceptional holonomy. Selecta Math. 1, 347 (1995). ar**v:hep-th/9407025

    Article  MathSciNet  MATH  Google Scholar 

  100. Acharya, B.S., Gukov, S.: M theory and singularities of exceptional holonomy manifolds. Phys. Rept. 392, 121–189 (2004). ar**v:hep-th/0409191

    Article  ADS  MathSciNet  Google Scholar 

  101. de Wit, B., van Holten, J.W., van Proeyen, A.: Structure of \(N=2\) supergravity. Nucl. Phys. B 184, 77 (1981)

    Article  ADS  Google Scholar 

  102. de Wit, B., Lauwers, P.G., Philippe, R., Su, S., van Proeyen, A.: Gauge and matetr fields coupled to \(N=2\) supergravity. Phys. Lett. B 134, 37 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  103. de Wit, B., Lauwers, P.G., van Proeyen, A.: Lagrangians of \(N=2\) supergravity - matter systems. Nucl. Phys. B 255, 569 (1985)

    Article  ADS  Google Scholar 

  104. de Roo, M., van Holten, J.W., de Wi, B., van Proeyen, A.: Chiral superfields in \(N=2\) supergravity. Nucl. Phys. B 173, 175 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  105. Bagger, J., Witten, E.: Matter couplings in \(N=2\) supergravity. Nucl. Phys. B 222, 1 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  106. Andrianopoli, L., Bertolini, M., Ceresole, A., D’Auria, R., Ferrara, S., Fré, P., Magri, T.: \(N=2\) supergravity and \(N=2\) super Yang-Mills theory on generl scalar manifolds: symplectic covariance, gaugings and the momentum map. J. Geom. Phys. 23, 111–189 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  107. Lebrun, C., Salamon, S.: Strong rigidity of positive quaternionic Kähler manifolds. Invent. Math. 118, 109–132 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  108. Myers, S.B.: Riemannian manifolds with positive mean curvature. Duke Math. J. 8, 401–404 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  109. Deligne, P., de Griffiths, T.: Séminaire Bourbaki Exp. 376. Springer Lecture Notes in Mathematics, vol. 180. Springer, Berlin (1970)

    Google Scholar 

  110. Gaillard, M.K., Zumino, B.: Duality rotations for interacting fields. Nucl. Phys. B 193, 221–244 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  111. Cecotti, S., Ferrara, S., Girardello, L.: Hidden noncompact symmetries in string theory. Nucl. Phys. B 308, 436–450 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  112. Mumford, D.: Abelian Varieties. Reprinted by Hindustan Book Agency (2008)

    Google Scholar 

  113. Birkenhake, C., Lange, H.: Complex Abelian Varieties. A Series of Comprehensive Studies in Mathematics, vol. 302, 2nd edn. Springer, Berlin (2004)

    Google Scholar 

  114. Griffiths, P., Schmid, W.: Locally homogeneous complex manifolds. Acta Math. 123, 145–166 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  115. Bryant, R., Griffiths, P.: Some observations on the infinitesimal period relations for regular threefolds with trivial canonical bundle. In: Artin, M., Tate, J., (eds.), Arithmetic and Geometry. Papers dedicated to I.R. Shafarevich, vol. II, pp. 77–102. Birkäuser (1983)

    Google Scholar 

  116. Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes. Commun. Math. Phys. 165, 311–428 (1994). ar**v:hep-th/9309140

    Article  ADS  MathSciNet  MATH  Google Scholar 

  117. Boyer, C., Galicki, K.: Sasakian Geometry. Oxford Mathematical Monographs. Oxford University Press, Oxford (2008)

    MATH  Google Scholar 

  118. Cannas da Silva, A.: Lectures on Symplectic Geometry. Lectures Notes in Mathematics, vol. 1764. Springer, Berlin (2008)

    Google Scholar 

  119. Arnol’d, V.I.: The cohomology ring of the colored braid group. Math. Notes 5, 138–140 (1969)

    Article  MATH  Google Scholar 

  120. Guillemin, V., Sternberg, S.: Symplectic Techniques in Physics. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  121. Witten, E., Bagger, J.: Quantization of Newton’s constant in certain supergravity theories. Phys. Lett. B 115, 202 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  122. Alexandrov, S., Manschot, J., Persson, D., Pioline, B.: Quantum hypermultiplet moduli spaces in \(N=2\) string vacua: a review. Proc. Symp. Pure Math. 90, 181–212 (2015). ar**v:1304.0766

    Article  MathSciNet  MATH  Google Scholar 

  123. Alexandrov, S., Persson, D., Pioline, B.: Wall-crossing. Rogers dilogarithm, and the QK/HK correspondence. JHEP 12, 027 (2011). ar**v:1110.0466

  124. Gaiotto, D., Moore, G.W., Neitzke, A.: Four-dimensional wall-crossing via three-dimensional field theory. Commun. Math. Phys. 299, 163–224 (2010). ar**v:0807.4723

    Article  ADS  MathSciNet  MATH  Google Scholar 

  125. Ferrara, S., Sabharwal, S.: Quaternionic manifolds for type II superstring vacua of Calabi-Yau spaces. Nucl. Phys. B 332, 317–332 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  126. Cecotti, S.: Moduli spaces of Calabi-Yau \(d\)-folds as gravitational-chiral instantons. JHEP 12, 008 (2020). ar**v:2007.09992

  127. Lu, Z., Sun, X.: Weil-Petersson geometry on moduli space of polarized Calabi-Yau manifolds. J. Inst. Math. Jussieu 3, 185–229 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  128. Lu, Z., Sun, X.: On the Weil-Petersson volume and the first Chern class of the moduli space of Calabi-Yau manifolds. Commun. Math. Phys. 261 297 (2006). ar**v:math.dg/0510021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Cecotti .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cecotti, S. (2023). Calabi–Yau Compactifications. In: Introduction to String Theory. Theoretical and Mathematical Physics. Springer, Cham. https://doi.org/10.1007/978-3-031-36530-0_11

Download citation

Publish with us

Policies and ethics

Navigation