Changes in Targets as an Explanation for Drug Resistance in Epilepsy

  • Chapter
  • First Online:
Pharmacoresistance in Epilepsy

Abstract

Drug resistance in epilepsy is a condition that limits the control of seizure activity. The drug target hypothesis postulates changes in those targets on which antiseizure medications act. Alterations in drug targets can be structural or localization in nature and signal transduction changes. This chapter describes changes in targets associated with drug resistance in epilepsy. In addition, other mechanisms are suggested by which target availability or signaling might be compromised, contributing to the pharmacoresistant phenotype of epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agnati LF, Fuxe K, Zini I, et al. Aspects on receptor regulation and isoreceptor identification. Med Biol. 1980;58:182–7.

    CAS  PubMed  Google Scholar 

  • Agnati LF, Ferre S, Burioni R, et al. Existence and theoretical aspects of homomeric and heteromeric dopamine receptor complexes and their relevance for neurological diseases. NeuroMolecular Med. 2005a;7:61–78.

    Article  CAS  PubMed  Google Scholar 

  • Agnati LF, Tarakanov AO, Ferré S, et al. Receptor-receptor interactions, receptor mosaics, and basic principles of molecular network organization. J Mol Neurosci. 2005b;26:193–208.

    Article  CAS  PubMed  Google Scholar 

  • Ajith A, Mondal S, Chattopadhyay S, et al. Mass spectrometry imaging deciphers dysregulated lipid metabolism in the human hippocampus affected by temporal lobe epilepsy. ACS Chem Neurosci. 2021;12:4187–94.

    Article  CAS  PubMed  Google Scholar 

  • Akk G, Li P, Bracamontes J, et al. Pharmacology of structural changes at the GABA A receptor transmitter binding site. Br J Pharmacol. 2011;162:840–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali MH, Imperiali B. Protein oligomerization: how and why. Bioorg Med Chem. 2005;13:5013–20.

    Article  CAS  PubMed  Google Scholar 

  • Ambrosino P, Alaimo A, Bartollino S, et al. Epilepsy-causing mutations in Kv7.2 C-terminus affect binding and functional modulation by calmodulin. Biochim Biophys Acta. 2015;1852:1856–66.

    Article  CAS  PubMed  Google Scholar 

  • Balla T. Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev. 2013;93:1019–137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bankstahl M, Bankstahl JP, Löscher W. Inter-individual variation in the anticonvulsant effect of phenobarbital in the pilocarpine rat model of temporal lobe epilepsy. Exp Neurol. 2012;234:70–84.

    Article  CAS  PubMed  Google Scholar 

  • Bartolomei F, Gastaldi M, Massacrier A, et al. Changes in the mRNAs encoding subtypes I, II and III sodium channel alpha subunits following kainate-induced seizures in rat brain. J Neurocytol. 1997;26:667–78.

    Article  CAS  PubMed  Google Scholar 

  • Bethmann K, Fritschy JM, Brandt C, et al. Antiepileptic drug resistant rats differ from drug responsive rats in GABAA receptor subunit expression in a model of temporal lobe epilepsy. Neurobiol Dis. 2008;31:169–87.

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya S, Puri S, Miledi R, et al. Internalization and recycling of 5-HT2A receptors activated by serotonin and protein kinase C-mediated mechanisms. Proc Natl Acad Sci U S A. 2002;99:14470–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biervert C, Schroeder BC, Kubisch C, et al. A potassium channel mutation in neonatal human epilepsy. Science. 1998;279:403–6.

    Article  CAS  PubMed  Google Scholar 

  • Blair RE, Sombati S, Lawrence DC, et al. Epileptogenesis causes acute and chronic increases in GABAA receptor endocytosis that contributes to the induction and maintenance of seizures in the hippocampal culture model of acquired epilepsy. J Pharmacol Exp Ther. 2004;310:871–80.

    Article  CAS  PubMed  Google Scholar 

  • Borroto-Escuela DO, Fuxe K. Oligomeric receptor complexes and their allosteric receptor-receptor interactions in the plasma membrane represent a new biological principle for integration of signals in the CNS. Front Mol Neurosci. 2019;12:230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borroto-Escuela DO, Romero-Fernandez W, Mudó G, et al. Fibroblast growth factor receptor 1-5-hydroxytryptamine 1A heteroreceptor complexes and their enhancement of hippocampal plasticity. Biol Psychiatry. 2012;71:84–91.

    Article  CAS  PubMed  Google Scholar 

  • Borroto-Escuela DO, Carlsson J, Ambrogini P, et al. Understanding the role of GPCR heteroreceptor complexes in modulating the brain networks in health and disease. Front Cell Neurosci. 2017;11:37.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouvard S, Costes N, Bonnefoi F, et al. Seizure-related short-term plasticity of benzodiazepine receptors in partial epilepsy: a [11C]flumazenil-PET study. Brain. 2005;128:1330–43.

    Article  PubMed  Google Scholar 

  • Bouwman BM, Suffczynski P, Lopes Da Silva FH. GABAergic mechanisms in absence epilepsy: a computational model of absence epilepsy simulating spike and wave discharges after vigabatrin in WAG/Rij rats. Eur J Neurosci. 2007;25:2783–90.

    Article  PubMed  Google Scholar 

  • Brackenbury WJ, Isom LL. Na+ channel β subunits: overachievers of the ion channel family. Front Pharmacol. 2011;2:53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brennan GP, Henshall DC. MicroRNAs as regulators of brain function and targets for treatment of epilepsy. Nat Rev Neurol. 2020;16:506–19.

    Article  CAS  PubMed  Google Scholar 

  • Brooks-Kayal AR, Shumate MD, ** H, Rikhter TY, et al. Selective changes in single cell GABA(A) receptor subunit expression and function in temporal lobe epilepsy. Nat Med. 1998;4:1166–72.

    Article  CAS  PubMed  Google Scholar 

  • Burtscher J, Schwarzer C. The opioid system in temporal lobe epilepsy: functional role and therapeutic potential. Front Mol Neurosci. 2017;10:245.

    Article  PubMed  PubMed Central  Google Scholar 

  • Caimmi S, Caffarelli C, Saretta F, et al. Drug desensitization in allergic children. Acta Biomed. 2019;90:20–9.

    CAS  PubMed  Google Scholar 

  • Catterall WA, Kalume F, Oakley JC. NaV1.1 channels and epilepsy. J Physiol. 2010;588:1849–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra D, Halonen LM, Linden AM, et al. Prototypic GABAA receptor agonist muscimol acts preferentially through forebrain high-affinity binding sites. Neuropsychopharmacology. 2010;35:999–1007.

    Article  CAS  PubMed  Google Scholar 

  • Chang P, Walker MC, Williams RSB. Seizure-induced reduction in PIP3 levels contributes to seizure-activity and is rescued by valproic acid. Neurobiol Dis. 2014;62:296–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen K, Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet. 2007;8:93–103.

    Article  CAS  PubMed  Google Scholar 

  • Ciruela F, Ferré S, Casadó V, et al. Heterodimeric adenosine receptors: a device to regulate neurotransmitter release. Cell Mol Life Sci. 2006;63:2427–31.

    Article  CAS  PubMed  Google Scholar 

  • Clatot J, Hoshi M, Wan X, et al. Voltage-gated sodium channels assemble and gate as dimers. Nat Commun. 2017;8:2077.

    Article  PubMed  PubMed Central  Google Scholar 

  • Clatot J, Zheng Y, Girardeau A, et al. Mutant voltage-gated Na+ channels can exert a dominant negative effect through coupled gating. Am J Physiol Heart Circ Physiol. 2018;315:H1250–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cristino L, Bisogno T, di Marzo V. Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat Rev Neurol. 2020;16:9–29.

    Article  PubMed  Google Scholar 

  • Cuellar-Herrera M, Velasco AL, Velasco F, et al. Mu opioid receptor mRNA expression, binding, and functional coupling to G-proteins in human epileptic hippocampus. Hippocampus. 2012;22:122–7.

    Article  CAS  Google Scholar 

  • Cuellar-Herrera M, Velasco AL, Velasco F, et al. Alterations of 5-HT1A receptor-induced G-protein functional activation and relationship to memory deficits in patients with pharmacoresistant temporal lobe epilepsy. Epilepsy Res. 2014;108:1853–63.

    Article  CAS  PubMed  Google Scholar 

  • De Lera Ruiz M, Kraus RL. Voltage-gated sodium channels: structure, function, pharmacology, and clinical indications. J Med Chem. 2015;58:7093–118.

    Article  PubMed  Google Scholar 

  • Deans C, Maggert KA. What do you mean, “epigenetic”? Genetics. 2015;199:887–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devaux J, Abidi A, Roubertie A, et al. A Kv7.2 mutation associated with early onset epileptic encephalopathy with suppression-burst enhances Kv7/M channel activity. Epilepsia. 2016;57:87–93.

    Article  Google Scholar 

  • Egger G, Liang G, Aparicio A, et al. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004;429:457–63.

    Article  CAS  PubMed  Google Scholar 

  • Ellerkmann RK, Remy S, Chen J, et al. Molecular and functional changes in voltage-dependent Na(+) channels following pilocarpine-induced status epilepticus in rat dentate granule cells. Neuroscience. 2003;119:323–33.

    Article  CAS  PubMed  Google Scholar 

  • Enna SJ. The GABA receptors. In: Enna SJ, Möhler H, editors. The GABA receptors. New Jersey: Humana Press; 2007. p. 1–21.

    Chapter  Google Scholar 

  • Estadella I, Pedrós-Gámez O, Colomer-Molera M. Endocytosis: a turnover mechanism controlling ion channel function. Cell. 2020;9:1833.

    Article  CAS  Google Scholar 

  • Falkenburger BH, Jensen JB, Dickson EJ. Phosphoinositides: lipid regulators of membrane proteins. J Physiol. 2010;588:3179–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filip M, Frankowska M, Zaniewska M, et al. Involvement of adenosine A2A and dopamine receptors in the locomotor and sensitizing effects of cocaine. Brain Res. 2006;1077:67–80.

    Article  CAS  PubMed  Google Scholar 

  • Fuxe K, Marcellino D, Rivera A, et al. Receptor-receptor interactions within receptor mosaics. Impact on neuropsychopharmacology. Brain Res Rev. 2008;58:415–52.

    Article  CAS  PubMed  Google Scholar 

  • Fuxe K, Marcellino D, Guidolin D. Brain receptor mosaics and their intramembrane receptor-receptor interactions: molecular integration in transmission and novel targets for drug development. J Acupunct Meridian Stud. 2009;2:1–25.

    Article  PubMed  Google Scholar 

  • Fuxe K, Borroto-Escuela DO, Romero-Fernandez W, et al. Moonlighting proteins and protein–protein interactions as neurotherapeutic targets in the G protein-coupled receptor field. Neuropsychopharmacology. 2014;39:131–55.

    Article  CAS  PubMed  Google Scholar 

  • Ghit A, Assal D, Al-Shami AS, et al. GABAA receptors: structure, function, pharmacology, and related disorders. J Genet Eng Biotechnol. 2021;19:123.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ginés S, Hillion J, Torvinen M, et al. Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. Proc Natl Acad Sci U S A. 2000;97:8606–11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goffin K, van Paesschen W, van Laere K. In vivo activation of endocannabinoid system in temporal lobe epilepsy with hippocampal sclerosis. Brain. 2011;134:1033–40.

    Article  PubMed  Google Scholar 

  • Gong Q, Huntsman C, Ma D. Clathrin-independent internalization and recycling. J Cell Mol Med. 2008;12:126–44.

    Article  CAS  PubMed  Google Scholar 

  • González MI, Cruz Del Angel Y, Brooks-Kayal A. Down-regulation of gephyrin and GABAA receptor subunits during epileptogenesis in the CA1 region of hippocampus. Epilepsia. 2013;54:616–24.

    Article  PubMed  PubMed Central  Google Scholar 

  • González-Maeso J. GPCR oligomers in pharmacology and signaling. Mol Brain. 2011;4:20.

    Article  PubMed  PubMed Central  Google Scholar 

  • González-Maeso J, Ang RL, Yuen T, et al. Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature. 2008;452:93–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goodrich JA, Kugel JF. Non-coding-RNA regulators of RNA polymerase II transcription. Nat Rev Mol Cell Biol. 2006;7:612–6.

    Article  CAS  PubMed  Google Scholar 

  • Grassi S, Giussani P, Mauri L, et al. Lipid rafts and neurodegeneration: structural and functional roles in physiologic aging and neurodegenerative diseases. J Lipid Res. 2020;61:636–54.

    Article  CAS  PubMed  Google Scholar 

  • Greene DL, Hoshi N. Modulation of Kv7 channels and excitability in the brain. Cell Mol Life Sci. 2017;74:495–508.

    Article  CAS  PubMed  Google Scholar 

  • Greene DL, Kosenko A, Hoshi N. Attenuating M-current suppression in vivo by a mutant Kcnq2 gene knock-in reduces seizure burden and prevents status epilepticus–induced neuronal death and epileptogenesis. Epilepsia. 2018;59:1908–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenfield LJ Jr. Molecular mechanisms of antiseizure drug activity at GABAA receptors. Seizure. 2013;22:589–600.

    Article  PubMed  PubMed Central  Google Scholar 

  • Greger IH, Khatri L, Kong X, et al. AMPA receptor tetramerization is mediated by Q/R editing. Neuron. 2003;40:763–74.

    Article  CAS  PubMed  Google Scholar 

  • Guan JS, Haggarty SJ, Giacometti E, et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature. 2009;459:55–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta MK, Mohan ML, Naga Prasad SV. G protein-coupled receptor resensitization paradigms. Int Rev Cell Mol Biol. 2018;339:63–91.

    Article  CAS  Google Scholar 

  • He X, Chen F, Zhang Y, et al. Upregulation of adenosine A2A receptor and downregulation of GLT1 is associated with neuronal cell death in Rasmussen’s encephalitis. Brain Pathol. 2020;30:246–60.

    Article  CAS  PubMed  Google Scholar 

  • Higley MJ, Sabatini BL. Competitive regulation of synaptic Ca2+ influx by D2 dopamine and A2A adenosine receptors. Nat Neurosci. 2010;13:958–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holliday R. Epigenetics: an overview. Dev Genet. 1994;15:453–7.

    Article  CAS  PubMed  Google Scholar 

  • Hou Q, Huang Y, Amato S, et al. Regulation of AMPA receptor localization in lipid rafts. Mol Cell Neurosci. 2008;38:213–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Doherty JJ, Dingledine R. Altered histone acetylation at glutamate receptor 2 and brain-derived neurotrophic factor genes is an early event triggered by status epilepticus. J Neurosci. 2002;22:8422–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L-G, Zou J, Lu Q-C. Silencing rno-miR-155-5p in rat temporal lobe epilepsy model reduces pathophysiological features and cell apoptosis by activating Sestrin-3. Brain Res. 2018;1689:109–22.

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Zhao F, Wang L, et al. Increased expression of histone deacetylases 2 in temporal lobe epilepsy: a study of epileptic patients and rat models. Synapse. 2012;66:151–9.

    Article  CAS  PubMed  Google Scholar 

  • Hudson BD, Hébert TE, Kelly MEM. Ligand- and heterodimer-directed signaling of the CB(1) cannabinoid receptor. Mol Pharmacol. 2010;77:1–9.

    Article  CAS  PubMed  Google Scholar 

  • Hull JM, Isom LL. Voltage-gated sodium channel β subunits: the power outside the pore in brain development and disease. Neuropharmacology. 2018;132:43–57.

    Article  CAS  PubMed  Google Scholar 

  • Hull JM, O’Malley HA, Chen C, et al. Excitatory and inhibitory neuron defects in a mouse model of Scn1b-linked EIEE52. Ann Clin Transl Neurol. 2020;7:2137–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huo JZ, Cortez MA, Snead OC III. GABA receptor proteins within lipid rafts in the AY-9944 model of atypical absence seizures. Epilepsia. 2009;50:776–88.

    Article  CAS  PubMed  Google Scholar 

  • Janković SM, Dješević M, Janković SV. Experimental GABA a receptor agonists and allosteric modulators for the treatment of focal epilepsy. J Exp Pharmacol. 2021;13:235–44.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jembrek MJ, Vlainic J. GABA receptors: pharmacological potential and pitfalls. Curr Pharm Des. 2015;21:4943–59.

    Article  CAS  PubMed  Google Scholar 

  • Jimenez-Mateos EM, Engel T, Merino-Serrais P, et al. Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects. Nat Med. 2012;18:1087–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jimenez-Mateos EM, Engel T, Merino-Serrais P, et al. Antagomirs targeting microRNA-134 increase hippocampal pyramidal neuron spine volume in vivo and protect against pilocarpine-induced status epilepticus. Brain Struct Funct. 2015;220:2387–99.

    Article  CAS  PubMed  Google Scholar 

  • Johnson A, Grove RA, Madhavan D, et al. Changes in lipid profiles of epileptic mouse model. Metabolomics. 2020;16:106.

    Article  CAS  PubMed  Google Scholar 

  • Kay HY, Greene DL, Kang S, et al. M-current preservation contributes to anticonvulsant effects of valproic acid. J Clin Invest. 2015;125:3904–14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim EC, Zhang J, Pang W, et al. Reduced axonal surface expression and phosphoinositide sensitivity in Kv7 channels disrupts their function to inhibit neuronal excitability in Kcnq2 epileptic encephalopathy. Neurobiol Dis. 2018;118:76–93.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim RY, Pless SA, Kurata HT. PIP2 mediates functional coupling and pharmacology of neuronal KCNQ channels. Proc Natl Acad Sci U S A. 2017;114:E9702–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Köhling R, Wolfart J. Potassium channels in epilepsy. Cold Spring Harb Perspect Med. 2016;6:a022871.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwan P, Arzimanoglou A, Berg AT, et al. Definition of drug-resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia. 2010;51:1069–77.

    Article  CAS  PubMed  Google Scholar 

  • Lamusuo S, Pitkänen A, Jutila L, et al. [11 C]Flumazenil binding in the medial temporal lobe in patients with temporal lobe epilepsy: correlation with hippocampal MR volumetry, T2 relaxometry, and neuropathology. Neurology. 2000;54:2252–60.

    Article  CAS  PubMed  Google Scholar 

  • Lawrence JJ, Saraga F, Churchill JF, et al. Somatodendritic Kv7/KCNQ/M channels control interspike interval in hippocampal interneurons. J Neurosci. 2006;26:12325–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazarowski A, Ramos AJ, García-Rivello H, et al. Neuronal and glial expression of the multidrug resistance gene product in an experimental epilepsy model. Cell Mol Neurobiol. 2004;24:77–85.

    Article  CAS  PubMed  Google Scholar 

  • Letellier M, Elramah S, Mondin M, et al. miR-92a regulates expression of synaptic GluA1-containing AMPA receptors during homeostatic scaling. Nat Neurosci. 2014;17:1040–2.

    Article  CAS  PubMed  Google Scholar 

  • Levental I, Veatch SL. The continuing mystery of lipid rafts. J Mol Biol. 2016;428:4749–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Carey M, Workman JL. The role of chromatin during transcription. Cell. 2007;128:707–19.

    Article  CAS  PubMed  Google Scholar 

  • Li J, Maghera J, Lamothe SM, et al. Heteromeric assembly of truncated neuronal Kv7 channels: implications for neurologic disease and pharmacotherapy. Mol Pharmacol. 2020;98:192–202.

    Article  CAS  PubMed  Google Scholar 

  • Liu XY, Chu XP, Mao LM, et al. Modulation of D2R-NR2B interactions in response to cocaine. Neuron. 2006;52:897–909.

    Article  CAS  PubMed  Google Scholar 

  • Lombardo AJ, Kuzniecky R, Powers RE, et al. Altered brain sodium channel transcript levels in human epilepsy. Brain Res Mol Brain Res. 1996;35:84–90.

    Article  CAS  PubMed  Google Scholar 

  • Loup F, Wieser HG, Yonekawa Y, et al. Selective alterations in GABAA receptor subtypes in human temporal lobe epilepsy. J Neurosci. 2000;20:5401–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas PT, Meadows LS, Nicholls J, et al. An epilepsy mutation in the β1 subunit of the voltage-gated sodium channel results in reduced channel sensitivity to phenytoin. Epilepsy Res. 2005;64:77–84.

    Article  CAS  PubMed  Google Scholar 

  • Lyko F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet. 2018;19:81–92.

    Article  CAS  PubMed  Google Scholar 

  • McKiernan RC, Jimenez-Mateos EM, Bray I, et al. Reduced mature microRNA levels in association with dicer loss in human temporal lobe epilepsy with hippocampal sclerosis. PLoS One. 2012;7:e35921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meadows LS, Malhotra J, Loukas A, et al. Functional and biochemical analysis of a sodium channel β1 subunit mutation responsible for generalized epilepsy with febrile seizures plus type 1. J Neurosci. 2002;22:10699–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miceli F, Striano P, Soldovieri MV, et al. A novel KCNQ3 mutation in familial epilepsy with focal seizures and intellectual disability. Epilepsia. 2015;56:e15–20.

    Article  CAS  PubMed  Google Scholar 

  • Miller-Delaney SFC, Bryan K, Das S, et al. Differential DNA methylation profiles of coding and non-coding genes define hippocampal sclerosis in human temporal lobe epilepsy. Brain. 2015;138:616–31.

    Article  PubMed  Google Scholar 

  • Mohandass A, Surenkhuu B, Covington K, et al. Kainic acid activates TRPV1 via a phospholipase C/PIP2-dependent mechanism in vitro. ACS Chem Neurosci. 2020;11:2999–3007.

    Article  CAS  PubMed  Google Scholar 

  • Newman-Tancredi A, Cussac D, Ormière AM, et al. Bell-shaped agonist activation of 5-HT1A receptor-coupled Gαi3 G-proteins: receptor density-dependent switch in receptor signaling. Cell Signal. 2019;63:109383.

    Article  CAS  PubMed  Google Scholar 

  • Newton AC, Bootman MD, Scott J. Second messengers. Cold Spring Harb Perspect Biol. 2016;8:a005926.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nothdurfter C, Tanasic S, di Benedetto B, et al. Lipid raft integrity affects GABAA receptor, but not NMDA receptor modulation by psychopharmacological compounds. Int J Neuropsychopharmacol. 2013;16:1361–71.

    Article  CAS  PubMed  Google Scholar 

  • Nuñez-Lumbreras MÁ, Castañeda-Cabral JL, Valle-Dorado MG, et al. Drug-resistant temporal lobe epilepsy alters the expression and functional coupling to Gαi/o proteins of CB1 and CB2 receptors in the microvasculature of the human brain. Front Behav Neurosci. 2021;14:611780.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ondarza R, Trejo-Martínez D, Corona-Amézcua R, et al. Evaluation of opioid peptide and muscarinic receptors in human epileptogenic neocortex: an autoradiography study. Epilepsia. 2002;43:230–4.

    Article  CAS  PubMed  Google Scholar 

  • Orlowski S, Martin S, Escargueil A. P-glycoprotein and ‘lipid rafts’: some ambiguous mutual relationships (floating on them, building them or meeting them by chance?). Cell Mol Life Sci. 2006;63:1038–59.

    Article  CAS  PubMed  Google Scholar 

  • Palma E, Ragozzino D, di Angelantonio S, et al. The antiepileptic drug levetiracetam stabilizes the human epileptic GABAA receptors upon repetitive activation. Epilepsia. 2007;48:1842–9.

    Article  CAS  PubMed  Google Scholar 

  • Parmentier M. GPCRs: heterodimer-specific signaling. Nat Chem Biol. 2015;11:244–5.

    Article  CAS  PubMed  Google Scholar 

  • Pellegrini-Giampietro DE, Gorter JA, Bennett MVL, et al. The GluR2 (GluR-B) hypothesis: Ca(2+)-permeable AMPA receptors in neurological disorders. Trends Neurosci. 1997;20:464–70.

    Article  CAS  PubMed  Google Scholar 

  • Perescis MFJ, van Luijtelaar G, van Rijn CM. Neonatal exposure to AY-9944 increases typical spike and wave discharges in WAG/Rij and Wistar rats. Epilepsy Res. 2019;157:106184.

    Article  CAS  PubMed  Google Scholar 

  • Pérez de la Mora M, Borroto-Escuela DO, Crespo-Ramírez M, et al. Dysfunctional heteroreceptor complexes as novel targets for the treatment of major depressive and anxiety disorders. Cell. 2022;11:1826.

    Article  Google Scholar 

  • Pike LJ. Lipid rafts: bringing order to chaos. J Lipid Res. 2003;44:655–67.

    Article  CAS  PubMed  Google Scholar 

  • Ragozzino D, Palma E, di Angelantonio S, et al. Rundown of GABA type A receptors is a dysfunction associated with human drug-resistant mesial temporal lobe epilepsy. Proc Natl Acad Sci U S A. 2005;102:15219–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ragsdale DS. How do mutant Nav1.1 sodium channels cause epilepsy? Brain Res Rev. 2008;58:149–59.

    Article  CAS  PubMed  Google Scholar 

  • Regen SL. The origin of lipid rafts. Biochemistry. 2020;59:4617–21.

    Article  CAS  PubMed  Google Scholar 

  • Remy S, Gabriel S, Urban BW, et al. A novel mechanism underlying drug resistance in chronic epilepsy. Ann Neurol. 2003a;53:469–79.

    Article  CAS  PubMed  Google Scholar 

  • Remy S, Urban BW, Elger CE, et al. Anticonvulsant pharmacology of voltage-gated Na+ channels in hippocampal neurons of control and chronically epileptic rats. Eur J Neurosci. 2003b;17:2648–58.

    Article  PubMed  Google Scholar 

  • Remy S, Beck H. Molecular and cellular mechanisms of pharmacoresistance in epilepsy. Brain. 2006;129:18–35.

    Article  PubMed  Google Scholar 

  • Reschke CR, Silva LFA, Norwood BA, et al. Potent anti-seizure effects of locked nucleic acid antagomirs targeting miR-134 in multiple mouse and rat models of epilepsy. Mol Ther Nuclei Acids. 2017;6:45–56.

    Article  CAS  Google Scholar 

  • Roca DJ, Rozenberg I, Farrant M, et al. Chronic agonist exposure induces down-regulation and allosteric uncoupling of the gamma-aminobutyric acid/benzodiazepine receptor complex. Mol Pharmacol. 1990;37:37–43.

    CAS  PubMed  Google Scholar 

  • Rocha L. Subchronic treatment with antiepileptic drugs modifies pentylenetetrazol-induced seizures in mice: its correlation with benzodiazepine receptor binding. Neuropsychiatr Dis Treat. 2008;4:619–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rocha L, Orozco-Suarez S, Alonso-Vanegas M, et al. Temporal lobe epilepsy causes selective changes in mu opioid and nociceptin receptor binding and functional coupling to G-proteins in human temporal neocortex. Neurobiol Dis. 2009;35:466–73.

    Article  CAS  PubMed  Google Scholar 

  • Rocha L, Alonso-Vanegas M, Martínez-Juarez IE, et al. Gabaergic alterations in neocortex of patients with pharmacoresistant temporal lobe epilepsy can explain the comorbidity of anxiety and depression: the potential impact of clinical factors. Front Cell Neurosci. 2015;8:442.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rocha L, Cinar R, Guevara-Guzmán R, et al. Endocannabinoid system and cannabinoid 1 receptors in patients with pharmacoresistant temporal lobe epilepsy and comorbid mood disorders. Front Behav Neurosci. 2020;14:52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rozenfeld R, Devi LA. Receptor heterodimerization leads to a switch in signaling: β-arrestin2-mediated ERK activation by μ-δ opioid receptor heterodimers. FASEB J. 2007;21:2455–65.

    Article  CAS  PubMed  Google Scholar 

  • Salpietro V, Dixon CL, Guo H, et al. AMPA receptor GluA2 subunit defects are a cause of neurodevelopmental disorders. Nat Commun. 2019;10:3094.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schrattenholz A, Soskic V. NMDA receptors are not alone: dynamic regulation of NMDA receptor structure and function by neuregulins and transient cholesterol-rich membrane domains leads to disease-specific nuances of glutamate-signalling. Curr Top Med Chem. 2006;6:663–86.

    Article  CAS  PubMed  Google Scholar 

  • Sheilabi MA, Takeshita LY, Sims EJ, et al. The sodium channel B4-subunits are dysregulated in temporal lobe epilepsy drug-resistant patients. Int J Mol Sci. 2020;21:2955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sibarov DA, Poguzhelskaya EE, Antonov SM. Downregulation of calcium-dependent NMDA receptor desensitization by sodium-calcium exchangers: a role of membrane cholesterol. BMC Neurosci. 2018;19:73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sierra-Valdez FJ, Ruiz-Suárez JC, Delint-Ramirez I. Pentobarbital modifies the lipid raft-protein interaction: a first clue about the anesthesia mechanism on NMDA and GABAA receptors. Biochim Biophys Acta. 2016;1858:2603–10.

    Article  CAS  PubMed  Google Scholar 

  • Sigel E, Steinmann ME. Structure, function, and modulation of GABA(A) receptors. J Biol Chem. 2012;287:40224–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000;1:31–9.

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Stredny CM, Loddenkemper T. Pharmacotherapy for pediatric convulsive status epilepticus. CNS Drugs. 2020;34:47–63.

    Article  CAS  PubMed  Google Scholar 

  • Singh SS, Jois SD (2018) Homo- and heterodimerization of proteins in cell signaling: inhibition and drug design. Adv Protein Chem Struct Biol 111:1–59.

    Google Scholar 

  • Sokolov MV, Henrich-Noack P, Raynoschek C, et al. Co-expression of β subunits with the voltage-gated sodium channel NaV1.7: the importance of subunit association and phosphorylation and their effects on channel pharmacology and biophysics. J Mol Neurosci. 2018;65:154–66.

    Article  CAS  PubMed  Google Scholar 

  • Soldovieri M, Boutry-Kryza N, Milh M, et al. Novel KCNQ2 and KCNQ3 mutations in a large cohort of families with benign neonatal epilepsy: first evidence for an altered channel regulation by syntaxin-1A. Hum Mutat. 2014;35:356–67.

    Article  CAS  PubMed  Google Scholar 

  • Soldovieri MV, Miceli F, Taglialatela M. Driving with no brakes: molecular pathophysiology of Kv7 potassium channels. Physiology (Bethesda). 2011;26:365–76.

    CAS  PubMed  Google Scholar 

  • Suh BC, Hille B. PIP2 is a necessary cofactor for ion channel function: how and why? Annu Rev Biophys. 2008;37:175–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, MacKinnon R. Structural basis of human KCNQ1 modulation and gating. Cell. 2020;180:340–7.e9.

    Google Scholar 

  • Tanganelli S, Antonelli T, Tomasini MC, et al. Relevance of dopamine D(2)/neurotensin NTS1 and NMDA/neurotensin NTS1 receptor interaction in psychiatric and neurodegenerative disorders. Curr Med Chem. 2012;19:304–16.

    Article  CAS  PubMed  Google Scholar 

  • Thijs RD, Surges R, O’Brien TJ, et al. Epilepsy in adults. Lancet. 2019;393:689–701.

    Article  PubMed  Google Scholar 

  • Tipton AE, Russek SJ. Regulation of inhibitory signaling at the receptor and cellular level; advances in our understanding of GABAergic neurotransmission and the mechanisms by which it is disrupted in epilepsy. Front Synaptic Neurosci. 2022;14:914374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toczek MT, Carson RE, Lang L, et al. PET imaging of 5-HT1A receptor binding in patients with temporal lobe epilepsy. Neurology. 2003;60:749–56.

    Article  CAS  PubMed  Google Scholar 

  • Tzingounis AV, Nicoll RA. Contribution of KCNQ2 and KCNQ3 to the medium and slow afterhyperpolarization currents. Proc Natl Acad Sci U S A. 2008;105:19974–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uebachs M, Opitz T, Royeck M, et al. Efficacy loss of the anticonvulsant carbamazepine in mice lacking sodium channel β subunits via paradoxical effects on persistent sodium currents. J Neurosci. 2010;30:8489–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uebachs M, Albus C, Opitz T, et al. Loss of β1 accessory Na+ channel subunits causes failure of carbamazepine, but not of lacosamide, in blocking high-frequency firing via differential effects on persistent Na+ currents. Epilepsia. 2012;53:1959–67.

    Article  CAS  PubMed  Google Scholar 

  • Van Rooijen LA, Vadnal R, Dobard P, et al. Enhanced inositide turnover in brain during bicuculline-induced status epilepticus. Biochem Biophys Res Commun. 1986;136:827–34.

    Article  PubMed  Google Scholar 

  • Vlainić J, Štrac DŠ, Jembrek MJ, et al. The effects of zolpidem treatment on GABA(A) receptors in cultured cerebellar granule cells: changes in functional coupling. Life Sci. 2012;90:889–94.

    Article  PubMed  Google Scholar 

  • Vreugdenhil M, Wadman WJ. Modulation of sodium currents in rat CA1 neurons by carbamazepine and valproate after kindling epileptogenesis. Epilepsia. 1999;40:1512–22.

    Article  CAS  PubMed  Google Scholar 

  • Wallace RH, Wang DW, Singh R, et al. Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel β1 subunit gene SCN1B. Nat Genet. 1998;19:366–70.

    Article  CAS  PubMed  Google Scholar 

  • Wang HS, Pan Z, Shi W, et al. KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science. 1998;282:1890–3.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Shen D, **a G, et al. Differential protein structural disturbances and suppression of assembly partners produced by nonsense GABRG2 epilepsy mutations: implications for disease phenotypic heterogeneity. Sci Rep. 2016;6:35294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Marvizón JCG. Time-course of the internalization and recycling of neurokinin 1 receptors in rat dorsal horn neurons. Brain Res. 2002;944:239–47.

    Article  CAS  PubMed  Google Scholar 

  • Ward RJ, Xu TR, Milligan G. GPCR oligomerization and receptor trafficking. Methods Enzymol. 2013;521:69–90.

    Article  CAS  PubMed  Google Scholar 

  • Wright A, Vissel B. The essential role of AMPA receptor GluA2 subunit RNA editing in the normal and diseased brain. Front Mol Neurosci. 2012;5:34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Craciun LC, Mirshahi T, et al. PIP(2) activates KCNQ channels, and its hydrolysis underlies receptor-mediated inhibition of M currents. Neuron. 2003;37:963–75.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Dong HT, Duan L, et al. HDAC4 gene silencing alleviates epilepsy by inhibition of GABA in a rat model. Neuropsychiatr Dis Treat. 2019;15:405–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Wang Z, Zhang B, et al. Downregulation of microRNA-155 by preoperative administration of valproic acid prevents postoperative seizures by upregulating SCN1A. Mol Med Rep. 2018;17:1375–81.

    CAS  PubMed  Google Scholar 

  • Zhou P, Yu H, Gu M, et al. Phosphatidylinositol 4,5-bisphosphate alters pharmacological selectivity for epilepsy-causing KCNQ potassium channels. Proc Natl Acad Sci U S A. 2013;110:8726–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Q, Wang L, Zhang Y, et al. Increased expression of DNA methyltransferase 1 and 3a in human temporal lobe epilepsy. J Mol Neurosci. 2012;46:420–6.

    Article  CAS  PubMed  Google Scholar 

  • Zhubi A, Veldic M, Puri NV, et al. An upregulation of DNA-methyltransferase 1 and 3a expressed in telencephalic GABAergic neurons of schizophrenia patients is also detected in peripheral blood lymphocytes. Schizophr Res. 2009;111:115–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the National Council for Science and Technology (CONACyT) for the scholarships (753802, CMA; 489736, DFB; and 1009939, MFM) and grant A3-S-26782.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa L. Rocha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martínez-Aguirre, C., Fonseca-Barriendos, D., Huerta de la Cruz, S., Fuentes-Mejia, M., Rocha, L.L. (2023). Changes in Targets as an Explanation for Drug Resistance in Epilepsy. In: Rocha, L.L., Lazarowski, A., Cavalheiro, E.A. (eds) Pharmacoresistance in Epilepsy. Springer, Cham. https://doi.org/10.1007/978-3-031-36526-3_7

Download citation

Publish with us

Policies and ethics

Navigation