Substrate Thickness as a Control Factor in Growth of Copper Oxide Nanostructures

  • Conference paper
  • First Online:
Integrated Computer Technologies in Mechanical Engineering - 2022 (ICTM 2022)

Abstract

Development of a theoretical model to describe the joint growth of Cu2O and CuO oxide layers accompanied with synthesis of copper oxide nanowires, which is being conducted from a limited copper layer of a certain thickness, is described. The necessity of the modelling is urged by the experimental evidences, and one is considered as a reference point to verify the model. According to the calculations, change in thickness of the copper layer deposited on a glass substrate e.g., increase the flexibility of the process by adding a control loop in addition to widely applied control of the substrate temperature during a thermal oxidation. Combination of these two factors (thickness of copper layer and temperature of synthesis) allows controlling the nanowire length and aspect ratio; moreover, the parameters can be controlled independently. It was found that if the temperature is enough to consume the copper layer after some time of heating, abrupt changes in the growth of oxide layers occur. If the temperatures is about 300–400 ℃, and Cu2O layer is not consumed, and nanowires reached the maximal length, only the diameter of nanowires increases; it the temperature increases, the length is also affected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, H., Zhao, T., Zhu, W., Kong, L., Huang, Y., Liu, H.: Enhanced field emission of CuO nanowires by aluminum coating for volatile organic compound detection. Sens. Actuators: B. Chem. 353, 131181 (2022)

    Article  Google Scholar 

  2. Mishra, A.K., Jarwal, D.K., Mukherjee, B., Kumar, A., Ratan, S., Jit, S.: CuO nanowire-based extended-gate field-effect-transistor (FET) for pH sensing and enzyme-free/receptor-free glucose sensing applications. IEEE Sens. J. 20(9), 5039–5047 (2020)

    Article  Google Scholar 

  3. Wu, C., Sun, Y., Cui, Z., Song, F., Wang, J.: Fabrication of CuS/CuO nanowire heterostructures on copper mesh with improved visible light photocatalytic properties. J. Phys. Chem. Solids 140, 109355 (2020)

    Article  Google Scholar 

  4. Zhang, R., et al.: All-solid-state wire-shaped asymmetric supercapacitor based on binder-free CuO nanowires on copper wire and PPy on carbon fiber electrodes. J. Electroanal. Chem. 893, 115323 (2021)

    Article  Google Scholar 

  5. Kajli, S.K., Ray, D., Roy, S.C.: Anomalous diameter dependent electrical transport in individual CuO nanowire. J. Phys. D: Appl. Phys. 54, 255104 (2021)

    Article  Google Scholar 

  6. Baranov, O.O.: Process of ion-beam surface layer formation. In: International Symposium on Discharges and Electrical Insulation in Vacuum – 2002, ISDEIV 2002, pp. 254–256. IEEE, Tours, France (2002)

    Google Scholar 

  7. Breus, A., Abashin, S., Lukashov, I., Serdiuk, O.: Anodic growth of copper oxide nanostructures in glow discharge. Arch. Mater. Sci. Eng. 114(1), 24–33 (2022)

    Article  Google Scholar 

  8. Breus, A., Abashin, S., Serdiuk, O.: Carbon nanostructure growth: new application of magnetron discharge. J. Achievements Mater. Manuf. Eng. 109(1), 17–25 (2021)

    Google Scholar 

  9. Shypul, O., Myntiuk, V.: Transient thermoelastic analysis of a cylinder having a varied coefficient of thermal expansion. Periodica Polytechn. Mech. Eng. 64(4), 273–278 (2020)

    Article  Google Scholar 

  10. Ugrimov, S., Smetankina, N., Kravchenko, O., Yareshchenko, V.: Analysis of laminated composites subjected to impact. In: Nechyporuk, M., Pavlikov, V., Kritskiy, D. (eds.) ICTM 2020. LNNS, vol. 188, pp. 234–246. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-66717-7_19

    Chapter  Google Scholar 

  11. Gnytko, O., Kuznetsova, A.: Theoretical research of the chip removal process in milling of the closed profile slots. Arch. Mater. Sci. Eng. 113(2), 69–76 (2022)

    Google Scholar 

  12. Kongvarhodom, C., Nammahachak, N., Tippomuang, W., Fongchaiya, S., Turner, C., Ratanaphan, S.: Role of crystallographic textures on the growth of CuO nanowires via thermal oxidation. Corros. Sci. 193, 109898 (2021)

    Article  Google Scholar 

  13. Shi, J., et al.: Synergistic effects on thermal growth of CuO nanowires. J. Alloy. Compd. 815, 152355 (2020)

    Article  Google Scholar 

  14. Pulagara, N.V., Kaur, G., Lahiri, I.: Enhanced field emission performance of growth-optimized CuO nanorods. Appl. Phys. A 127, 817 (2021)

    Article  Google Scholar 

  15. Ao, Y., et al.: Preparation and characterization of hierarchical nanostructures composed by CuO nanowires within directional microporous Cu. Vacuum 182, 109774 (2020)

    Article  Google Scholar 

  16. Moise, C.C., et al.: On the growth of copper oxide nanowires by thermal oxidation near the threshold temperature at atmospheric pressure. J. Alloy. Compd. 886, 161130 (2021)

    Article  Google Scholar 

  17. Guillen, C., Herrero, J.: Single-phase Cu2O and CuO thin films obtained by low-temperature oxidation processes. J. Alloy. Compd. 737, 718–724 (2018)

    Article  Google Scholar 

  18. Sondors, R., et al.: Size distribution, mechanical and electrical properties of CuO nanowires grown by modified thermal oxidation methods. Nanomaterials 10, 1051 (2020)

    Article  Google Scholar 

  19. Li, X., Zhang, J., Yuan, Y., Liao, L., Pan, C.: Effect of electric field on CuO nanoneedle growth during thermal oxidation and its growth mechanism. J. Appl. Phys. 108, 024308 (2010)

    Article  Google Scholar 

  20. Yan, H., et al.: Realization of adhesion enhancement of CuO nanowires growth on copper substrate by laser texturing. Opt. Laser Technol. 119, 105612 (2019)

    Article  Google Scholar 

  21. Tang, C.M., Wang, Y.B., Yao, R.H., Ning, H.L., Qiu, W.Q., Liu, Z.W.: Enhanced adhesion and field emission of CuO nanowires synthesized by simply modified thermal oxidation technique. Nanotechnology 27, 395605 (2016)

    Article  Google Scholar 

  22. Lai, F., Lin, S., Chen, Z., Hu, H., Lin, L.: Wrinkling and growth mechanism of CuO nanowires in thermal oxidation of copper foil. Chin. J. Chem. Phys. 26, 585 (2013)

    Article  Google Scholar 

  23. Mumm, F., Sikorski, P.: Oxidative fabrication of patterned, large, non-flaking CuO nanowire arrays. Nanotechnology 22(10), 105605 (2011)

    Article  Google Scholar 

  24. Hsueh, H.T., et al.: CuO nanowire-based humidity sensors prepared on glass substrate. Sens. Actuators B 156, 906–911 (2011)

    Article  Google Scholar 

  25. Altaweel, A., Filipič, G., Gries, T., Belmonte, T.: Controlled growth of copper oxide nanostructures by atmospheric pressure micro-afterglow. J. Cryst. Growth 407, 17–24 (2014)

    Article  Google Scholar 

  26. Shyrokyi, Y., Kostyuk, G.: Investigation of the influence of crystallization energy on the size of nanostructures during copper ion-plasma treatment. In: Nechyporuk, M., Pavlikov, V., Kritskiy, D. (eds.) ICTM 2021. LNNS, vol. 367, pp. 57–66. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-94259-5_6

  27. Shyrokyi, Y., Kostyuk, G.: Erosion processes on copper electrodes applied to growth of nanostructures in plasma. In: Ivanov, V., Trojanowska, J., Pavlenko, I., Rauch, E., Peraković, D. (eds.) DSMIE 2022. LNME, pp. 494–503. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06025-0_49

  28. Baranov, O., Košiček, M., Filipič, G., Cvelbar, U.: A deterministic approach to the thermal synthesis and growth of 1D metal oxide nanostructures. Appl. Surf. Sci. 566, 150619 (2021)

    Article  Google Scholar 

  29. Baranov, O., Filipic, G., Cvelbar, U.: Towards a highly-controllable synthesis of copper oxide nanowires in radio-frequency reactive plasma: fast saturation at the targeted size. Plasma Sources Sci. Technol. 28, 084002 (2018)

    Article  Google Scholar 

  30. Breus, A., Abashin, S., Serdiuk, O., Baranov, O.: Linking dynamics of growth of copper oxide nanostructures in air. In: Nechyporuk, M., Pavlikov, V., Kritskiy, D. (eds.) ICTM 2021. LNNS, vol. 367, pp. 555–564. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-94259-5_47

  31. Ruzaikin, V., Lukashov, I.: Experimental method of ammonia decomposition study based on thermal-hydraulic approach. Results Eng. 15, 100600 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges the support from the project funded by National Research Foundation of Ukraine, under grant agreement No. 2020.02/0119.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Baranov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baranov, O. (2023). Substrate Thickness as a Control Factor in Growth of Copper Oxide Nanostructures. In: Nechyporuk, M., Pavlikov, V., Kritskiy, D. (eds) Integrated Computer Technologies in Mechanical Engineering - 2022. ICTM 2022. Lecture Notes in Networks and Systems, vol 657. Springer, Cham. https://doi.org/10.1007/978-3-031-36201-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36201-9_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36200-2

  • Online ISBN: 978-3-031-36201-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation