Sensor-Based Modeling and Analysis of Cardiac Systems

  • Chapter
  • First Online:
Sensing, Modeling and Optimization of Cardiac Systems

Part of the book series: SpringerBriefs in Service Science ((SSS))

  • 138 Accesses

Abstract

Cardiac disorders happen every day and account for some 30% of mortalities in the USA. The sensor-based research for health informatics is targeting the timeliness of cardiovascular diagnostics or prognostics but is highly dependent on the close integration of computing, sensing, modeling methods with physiological processes to achieve medical systems with high levels of functionality, adaptability, autonomy, and effectiveness. This chapter presents the methodology of sensor-based modeling and analysis in guiding the optimal management of heart health. To that end, people’s living styles and habits can be associated with sensor-based health variables (or biomarkers), providing education on heart-healthy living and raising the awareness of smart health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Yang, S. Bukkapatnam, R. Komanduri, Nonlinear adaptive wavelet analysis of electrocardiogram signals. Phys. Rev. E 76(2), 026214 (2007)

    Google Scholar 

  2. G.D. Clifford, F. Azuaje, P. McSharry, et al., Advanced Methods and Tools for ECG Data Analysis. Artech House Boston, vol. 10 (2006)

    Google Scholar 

  3. S. Bukkapatnam, R. Komanduri, H. Yang, et al., Classification of atrial fibrillation episodes from sparse electrocardiogram data. J. Electrocardiol. 41(4), 292–299 (2008)

    Article  Google Scholar 

  4. N. Hughes, L. Tarassenko, S.J. Roberts, Markov models for automated ECG interval analysis. Adv. Neural Inf. Proces. Syst. 16, 1–8 (2003)

    Google Scholar 

  5. N.V. Thakor, Y.-S. Zhu, Applications of adaptive filtering to ECG analysis: Noise cancellation and arrhythmia detection. IEEE Trans. Biomed. Eng. 38(8), 785–794 (1991)

    Article  Google Scholar 

  6. Y. Chen, H. Yang, Wavelet packet analysis of disease-altered recurrence dynamics in the long-term spatiotemporal vectorcardiogram (VCG) signals, in 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (IEEE, New York, 2013), pp. 2595–2598

    Google Scholar 

  7. G. Liu, H. Yang, Multiscale adaptive basis function modeling of spatiotemporal vectorcardiogram signals. IEEE J. Biomed. Health Inform. 17(2), 484–492 (2013)

    Article  Google Scholar 

  8. H. Yang, Multiscale recurrence quantification analysis of spatial cardiac vectorcardiogram signals. IEEE Trans. Biomed. Eng. 58(2), 339–347 (2010)

    Article  Google Scholar 

  9. Y. Chen, H. Yang, Multiscale recurrence analysis of long-term nonlinear and nonstationary time series. Chaos, Solitons & Fractals 45(7), 978–987 (2012)

    Article  Google Scholar 

  10. H. Yang, S.T. Bukkapatnam, R. Komanduri, Spatiotemporal representation of cardiac vectorcardiogram (VCG) signals. Biomed. Eng. Online 11(1), 1–15 (2012)

    Article  Google Scholar 

  11. Y. Rudy, J.E. Burnes, Noninvasive electrocardiographic imaging. Ann. Noninvasive Electrocardiol. 4(3), 340–359 (1999)

    Article  Google Scholar 

  12. Y. Chen, H. Yang, Heterogeneous postsurgical data analytics for predictive modeling of mortality risks in intensive care units, in 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, New York, 2014), pp. 4310–4314

    Google Scholar 

  13. Y. Chen, F. Leonelli, H. Yang, Heterogeneous sensing and predictive modeling of postoperative outcomes, in Healthcare Analytics: From Data to Knowledge to Healthcare Improvement (2016), pp. 463–501

    Google Scholar 

  14. Y. Chen, H. Yang, Self-organized neural network for the quality control of 12-lead ECG signals. Physiol. Meas. 33(9), 1399 (2012)

    Google Scholar 

  15. C. Kan, Y. Chen, H. Yang, Multiscale quality control of telemedicine ECG signal acquisition, in Telehealthcare Computing and Engineering: Principles and Design (2011)

    Google Scholar 

  16. Y. He, Missing data analysis using multiple imputation: getting to the heart of the matter. Circ. Cardiovasc. Qual. Outcomes 3(1), 98–105 (2010)

    Article  Google Scholar 

  17. H. Liao, J. Sun, Nonparametric and semi-parametric sensor recovery in multichannel condition monitoring systems. IEEE Trans. Autom. Sci. Eng. 8(4), 744–753 (2011)

    Article  Google Scholar 

  18. K. Pelckmans, J. De Brabanter, J.A. Suykens, B. De Moor, Handling missing values in support vector machine classifiers. Neural Netw. 18(5–6), 684–692 (2005)

    Article  Google Scholar 

  19. V.R. Joseph, Limit Kriging. Technometrics 48(4), 458–466 (2006)

    Article  Google Scholar 

  20. V.R. Joseph, Bayesian computation using design of experiments-based interpolation technique. Technometrics 54(3), 209–225 (2012)

    Article  Google Scholar 

  21. C. Cheng, A. Sa-Ngasoongsong, O. Beyca, et al., Time series forecasting for non-linear and non-stationary processes: a review and comparative study. IIE Trans. 47(10), 1053–1071 (2015)

    Article  Google Scholar 

  22. D. Du, H. Yang, A.R. Ednie, E.S. Bennett, Statistical metamodeling and sequential design of computer experiments to model glyco-altered gating of sodium channels in cardiac myocytes. IEEE J. Biomed. Health Inform. 20(5), 1439–1452 (2015)

    Article  Google Scholar 

  23. F. Imani, C. Cheng, R. Chen, H. Yang, Nested Gaussian process modeling for high-dimensional data imputation in healthcare systems, in Proceedings of the IIE Annual Conference (Institute of Industrial and Systems Engineers (IISE), New York, 2018), pp. 1312–1317

    Google Scholar 

  24. F. Imani, C. Cheng, R. Chen, H. Yang, Nested Gaussian process modeling and imputation of high-dimensional incomplete data under uncertainty. IISE Transactions on Healthcare Systems Engineering 9(4), 315–326 (2019)

    Article  Google Scholar 

  25. D. Dawson, H. Yang, M. Malshe, S.T. Bukkapatnam, B. Benjamin, R. Komanduri, Linear affine transformations between 3-lead (Frank XYZ leads) vectorcardiogram and 12-lead electrocardiogram signals. J. Electrocardiol. 42(6), 622–630 (2009)

    Article  Google Scholar 

  26. H. Yang, C. Kan, G. Liu, Y. Chen, Spatiotemporal differentiation of myocardial infarctions. IEEE Trans. Autom. Sci. Eng. 10(4), 938–947 (2013)

    Article  Google Scholar 

  27. R. Bousseljot, D. Kreiseler, A. Schnabel, Nutzung der EKG-Signaldatenbank CARDIODAT der PTB über das Internet (1995)

    Google Scholar 

  28. A.L. Goldberger, L.A. Amaral, L. Glass, et al., PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)

    Article  Google Scholar 

  29. C. Kan, H. Yang, Dynamic spatiotemporal war** for the detection and location of myocardial infarctions, in 2012 IEEE International Conference on Automation Science and Engineering (CASE) (IEEE, New York, 2012), pp. 1046–1051

    Google Scholar 

  30. H. Yang, C. Kan, A. Krall, D. Finke, Network modeling and Internet of things for smart and connected health systems—a case study for smart heart health monitoring and management. IISE Transactions on Healthcare Systems Engineering 10(3), 159–171 (2020)

    Article  Google Scholar 

  31. C. Kan, F.M. Leonelli, H. Yang, Map reduce for optimizing a large-scale dynamic network-the Internet of Hearts, in 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (IEEE, New York, 2016), pp. 2962–2965

    Google Scholar 

  32. C. Kan, H. Yang, Dynamic network monitoring and control of in situ image profiles from ultraprecision machining and biomanufacturing processes. Qual. Reliab. Eng. Int. 33(8), 2003–2022 (2017)

    Article  Google Scholar 

  33. C. Kan, C. Cheng, H. Yang, Heterogeneous recurrence monitoring of dynamic transients in ultraprecision machining processes. J. Manuf. Syst. 41, 178–187 (2016)

    Article  Google Scholar 

  34. Y. Chen, H. Yang, Heterogeneous recurrence t2 charts for monitoring and control of nonlinear dynamic processes, in 2015 IEEE International Conference on Automation Science and Engineering (CASE) (IEEE, New York, 2015), pp. 1066–1071

    Google Scholar 

  35. Y. Chen, G. Liu, H. Yang, Sparse particle filtering for modeling space-time dynamics in distributed sensor networks, in 2014 IEEE International Conference on Automation Science and Engineering (CASE) (IEEE, New York, 2014), pp. 626–631

    Google Scholar 

  36. Y. Chen, H. Yang, Sparse modeling and recursive prediction of space-time dynamics in stochastic sensor networks. IEEE Trans. Autom. Sci. Eng. 13(1), 215–226 (2015)

    Article  Google Scholar 

  37. A. Meyers, H. Yang, Markov chains for fault-tolerance modeling of stochastic networks. IEEE Trans. Autom. Sci. Eng. 19(3), 2591–2606 (2021)

    Article  Google Scholar 

  38. G. Wagner, G. Bub, P. Kohl, F. Pillekamp, Electrocardiography and imaging. J. Electrocardiol. 40(1S), S66 (2007)

    Google Scholar 

  39. B. Huang, W. Kinsner, ECG frame classification using dynamic time war**, in IEEE CCECE2002: Canadian Conference on Electrical and Computer Engineering. Conference Proceedings (Cat. No. 02CH37373), vol. 2 (IEEE, New York, 2002), pp. 1105–1110

    Google Scholar 

  40. P.S. Addison, Wavelet transforms and the ECG: A review. Physiol. Meas. 26(5), R155 (2005)

    Google Scholar 

  41. A. Lyon, A. Minchole, J.P. Martinez, P. Laguna, B. Rodriguez, Computational techniques for ECG analysis and interpretation in light of their contribution to medical advances. J. R. Soc. Interface 15(138), 20170821 (2018)

    Google Scholar 

  42. Z. Ebrahimi, M. Loni, M. Daneshtalab, A. Gharehbaghi, A review on deep learning methods for ECG arrhythmia classification. Expert Syst. Appl.: X 7, 100033 (2020)

    Google Scholar 

  43. Y. **a, H. Zhang, L. Xu, et al., An automatic cardiac arrhythmia classification system with wearable electrocardiogram. IEEE Access 6, 16529–16538 (2018)

    Article  Google Scholar 

  44. B. Zhou, S. Liu, B. Hooi, X. Cheng, J. Ye, BeatGAN: anomalous rhythm detection using adversarially generated time series, in IJCAI (2019), pp. 4433–4439

    Google Scholar 

  45. P. Wang, B. Hou, S. Shao, R. Yan, ECG arrhythmias detection using auxiliary classifier generative adversarial network and residual network. IEEE Access 7, 100910–100922 (2019)

    Article  Google Scholar 

  46. Z. Wang, S. Stavrakis, B. Yao, Hierarchical deep learning with generative adversarial network for automatic cardiac diagnosis from ECG signals. Comput. Biol. Med. 155, 106641 (2023)

    Article  Google Scholar 

  47. K. Weiss, T.M. Khoshgoftaar, D. Wang, A survey of transfer learning. J. Big Data 3(1), 1–40 (2016)

    Article  Google Scholar 

  48. Z. Wang, B. Yao, Multi-branching temporal convolutional network for sepsis prediction. IEEE J. Biomed. Health Inform. 26(2), 876–887 (2021)

    Article  Google Scholar 

  49. Z. Wang, C. Liu, B. Yao, Multi-branching neural network for myocardial infarction prediction, in 2022 IEEE 18th International Conference on Automation Science and Engineering (CASE) (IEEE, New York, 2022), pp. 2118–2123

    Google Scholar 

  50. S. Chen, Z. Wang, B. Yao, T. Liu, Prediction of diabetic retinopathy using longitudinal electronic health records, in 2022 IEEE 18th International Conference on Automation Science and Engineering (CASE) (IEEE, New York, 2022), pp. 949–954

    Google Scholar 

  51. G.B. Moody, R.G. Mark, The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 20(3), 45–50 (2001)

    Article  Google Scholar 

  52. T. Li, M. Zhou, ECG classification using wavelet packet entropy and random forests. Entropy 18(8), 285 (2016)

    Google Scholar 

  53. U.R. Acharya, S.L. Oh, Y. Hagiwara, et al., A deep convolutional neural network model to classify heartbeats. Comput. Biol. Med. 89, 389–396 (2017)

    Article  Google Scholar 

  54. S. Mousavi, F. Afghah, F. Khadem, U.R. Acharya, ECG language processing (ELP): a new technique to analyze ECG signals. Comput. Methods Prog. Biomed. 202, 105959 (2021)

    Article  Google Scholar 

  55. M. Kachuee, S. Fazeli, M. Sarrafzadeh, ECG heartbeat classification: a deep transferable representation, in 2018 IEEE International Conference on Healthcare Informatics (ICHI) (IEEE, New York, 2018), pp. 443–444

    Google Scholar 

  56. K. Aras, W. Good, J. Tate, et al., Experimental data and geometric analysis repository-EDGAR. J. Electrocardiol. 48(6), 975–981 (2015)

    Article  Google Scholar 

  57. R.M. Gulrajani, The forward and inverse problems of electrocardiography. IEEE Eng. Med. Biol. Mag. 17(5), 84–101 (1998)

    Article  Google Scholar 

  58. D.H. Brooks, G.F. Ahmad, R.S. MacLeod, G.M. Maratos, Inverse electrocardiography by simultaneous imposition of multiple constraints. IEEE Trans. Biomed. Eng. 46(1), 3–18 (1999)

    Article  Google Scholar 

  59. S. Ghosh, Y. Rudy, Application of l1-norm regularization to epicardial potential solution of the inverse electrocardiography problem. Ann. Biomed. Eng. 37(5), 902–912 (2009)

    Article  Google Scholar 

  60. B. Messnarz, B. Tilg, R. Modre, G. Fischer, F. Hanser, A new spatiotemporal regularization approach for reconstruction of cardiac transmembrane potential patterns. IEEE Trans. Biomed. Eng. 51(2), 273–281 (2004)

    Article  Google Scholar 

  61. L. Wang, H. Zhang, K.C. Wong, H. Liu, P. Shi, Physiological-model-constrained noninvasive reconstruction of volumetric myocardial transmembrane potentials. IEEE Trans. Biomed. Eng. 57(2), 296–315 (2009)

    Article  Google Scholar 

  62. B. Yao, H. Yang, Physics-driven spatiotemporal regularization for high-dimensional predictive modeling: a novel approach to solve the inverse ECG problem. Sci. Rep. 6(1), 1–13 (2016)

    Article  Google Scholar 

  63. B. Yao, H. Yang, Spatiotemporal regularization for inverse ECG modeling. IISE Trans. Healthcare Syst. Eng. 11(1), 1–13 (2020)

    Google Scholar 

  64. J. **e, B. Yao, Physics-constrained deep learning for robust inverse ECG modeling, in IEEE Transactions on Automation Science and Engineering (2022)

    Google Scholar 

  65. J. **e, B. Yao, Physics-constrained deep active learning for spatiotemporal modeling of cardiac electrodynamics. Comput. Biol. Med. 146, 105586 (2022)

    Article  Google Scholar 

  66. R.R. Aliev, A.V. Panfilov, A simple two-variable model of cardiac excitation. Chaos, Solitons & Fractals 7(3), 293–301 (1996)

    Article  Google Scholar 

  67. B. Yao, R. Zhu, H. Yang, Characterizing the location and extent of myocardial infarctions with inverse ECG modeling and spatiotemporal regularization. IEEE J. Biomed. Health Inform. 22(5), 1445–1455 (2017)

    Article  Google Scholar 

  68. B. Yao, R. Zhu, H. Yang, Inverse ECG modeling with spatiotemporal regularization for the characterization of myocardial infarctions, in 2018 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI) (IEEE, New York, 2018), pp. 120–123

    Google Scholar 

  69. F. Dawoud, G.S. Wagner, G. Moody, B.M. Horáček, Using inverse electrocardiography to image myocardial infarction-reflecting on the 2007 PhysioNet/Computers in Cardiology Challenge. J. Electrocardiol. 41(6), 630–635 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, H., Yao, B. (2023). Sensor-Based Modeling and Analysis of Cardiac Systems. In: Sensing, Modeling and Optimization of Cardiac Systems. SpringerBriefs in Service Science. Springer, Cham. https://doi.org/10.1007/978-3-031-35952-1_3

Download citation

Publish with us

Policies and ethics

Navigation