A Posteriori Error Estimates and Adaptive Error Control for Permittivity Reconstruction in Conductive Media

  • Conference paper
  • First Online:
Gas Dynamics with Applications in Industry and Life Sciences (GKDLS 2021, GKDLS 2022)

Abstract

An inverse problem of reconstruction of the spatially distributed dielectric permittivity function in the Maxwell’s system is considered. The reconstruction method is based on the optimization approach to find stationary point of the Tikhonov functional. A posteriori estimates for the corresponding Tikhonov functional and for the reconstructed dielectric permittivity function are derived. Based on these estimates two adaptive conjugate gradient algorithms are formulated. Our numerical tests show feasibility of application of an adaptive optimization algorithm for reconstruction of dielectric permittivity function using anatomically realistic breast phantom of MRI database produced in University of Wisconsin [53].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 179.34
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Asadzadeh, An Introduction to Finite Element Methods for Differential Equations, Wiley, 2020.

    Google Scholar 

  2. M. Asadzadeh, L. Beilina, Stability and Convergence Analysis of a Domain Decomposition FE/FD Method for Maxwell’s Equations in the Time Domain, Algorithms, Algorithms 2022, 15(10), 337; https://doi.org/10.3390/a15100337

  3. A. Bakushinsky, M. Y. Kokurin, and A. Smirnova, Iterative Methods for Ill-posed Problems, De Gruyter, Berlin, 2011.

    MATH  Google Scholar 

  4. A. B. Bakushinsky and M. Yu. Kokurin, Iterative Methods for Approximate Solution of Inverse Problems, Springer, Dordrecht, The Netherlands, 2004.

    Book  MATH  Google Scholar 

  5. L. Beilina, E.  Lindström, An Adaptive Finite Element/Finite Difference Domain Decomposition Method for Applications in Microwave Imaging, Electronics 2022, 11(9), 1359; https://doi.org/10.3390/electronics11091359

  6. L. Beilina, V. Ruas, On the Maxwell-wave equation coupling problem and its explicit finite-element solution, Applications of Mathematics, Vol. 68, No. 1, pp. 75–98, 2023.

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Beilina and M. V. Klibanov, Approximate global convergence and adaptivity for Coefficient Inverse Problems, Springer, New York, 2012.

    Book  MATH  Google Scholar 

  8. L. Beilina, M. V. Klibanov, M. Y. Kokurin, Adaptivity with relaxation for ill-posed problems and global convergence for a coefficient inverse problem, Journal of Mathematical Sciences, JMS, Springer. 167 (3) s. 279–325, 2010.

    Google Scholar 

  9. M. Bellassoued, Global logarithmic stability in inverse hyperbolic problem by arbitrary boundary observation, Inverse Problems, 20, 1033–1052, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Bellassoued, Uniqueness and stability in determining the speed of propagation of second-order hyperbolic equation with variable coefficients, Applicable Analysis, 83, 983–1014, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Bellassoued, D. Jellali and M. Yamamoto, Lipschitz stability in in an inverse problem for a hyperbolic equation with a finite set of boundary data, Applicable Analysis 87, 1105–1119, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Bellassoued and M. Yamamoto, Logarithmic stability in determination of a coefficient in an acoustic equation by arbitrary boundary observation, J. Math. Pures Appl. 85, 193–224, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Bellassoued and M. Yamamoto, Determination of a coefficient in the wave equation with a single measurement, Applicable Analysis 87, 901–920, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. I. Belishev, Boundary control in reconstruction of manifolds and metrics (the bc method), Inverse Problems, 13 (1997), pp. R1–R45.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. I. Belishev and V. Y. Gotlib, Dynamical variant of the bc-method: Theory and numerical testing, J. Inverse Ill-Posed Prob., 7 (1999), pp. 221–240.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Bondestam Malmberg, L. Beilina, An Adaptive Finite Element Method in Quantitative Reconstruction of Small Inclusions from Limited Observations, Appl. Math. Inf. Sci., 12(1), 1–19, 2018.

    Google Scholar 

  17. L. Baudouin, M. de Buhan, S. Ervedoza and A. Osses, Carleman-based reconstruction algorithm for waves, SIAM J. Numer. Anal. 59 (2021), no. 2, 998–1039.

    Article  MathSciNet  MATH  Google Scholar 

  18. V. A. Burov, S. A. Morozov, and O. D. Rumyantseva, Reconstruction of fine-scale structure of acoustical scatterers on large-scale contrast background, Acoustical Imaging, 26 (2002), pp. 231–238.

    Article  Google Scholar 

  19. Y. Chen, Inverse scattering via Heisenberg uncertainty principle, Inverse Problems, 13 (1997), pp. 253–282.

    Article  MathSciNet  MATH  Google Scholar 

  20. H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996.

    Book  MATH  Google Scholar 

  21. M. Eller, V. Isakov, G. Nakamura and D.Tataru Uniqueness and stability in the Cauchy problem for Maxwell and elasticity systems, in “Nonlinear Partial Differential Equations and their Applications”, Collège de France Seminar, 14 (2002), 329–349.

    Google Scholar 

  22. G. Chavent, Nonlinear Least Squares for Inverse Problems. Theoretical Foundations and Step-by-Step Guide for Applications, Springer, New York, 2009.

    MATH  Google Scholar 

  23. A. V. Goncharsky, S. Y. Romanov, A method of solving the coefficient inverse problems of wave tomography, Comput. Math. Appl., 2019;77:967–980.

    Article  MathSciNet  MATH  Google Scholar 

  24. A. V. Goncharsky, S. Y. Romanov, S. Y. Seryozhnikov, Low-frequency ultrasonic tomography: math- ematical methods and experimental results. Moscow University Phys Bullet. 2019;74(1): 43–51.

    Article  Google Scholar 

  25. K. Eriksson, D. Estep and C. Johnson, Applied Mathematics: Body and Soul: Calculus in Several Dimensions, Springer, Berlin, 2004

    Book  MATH  Google Scholar 

  26. O. Imanuvilov and M. Yamamoto, Global uniqueness and stability in determining coefficients of wave equations, Commun. Partial Diff. Eqns 26, 1409–1425, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  27. O. Imanuvilov and M. Yamamoto, Global Lipschitz stability in an inverse hyperbolic problem by interior observations, Inverse Problems 17, 717–728, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  28. O. Imanuvilov and M. Yamamoto, Determination of a coefficient in an acoustic equation with single measurement, Inverse Problems 19 (2003), 157–171.

    Article  MathSciNet  MATH  Google Scholar 

  29. C. Johnson and A. Szepessy, Adaptive finite element methods for conservation laws based on a posteriori error estimation, Comm. Pure Appl. Math., 48, 199–234, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  30. C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element Method, Dover Books on Mathematics, 2009.

    Google Scholar 

  31. Vo Anh Khoa, Grant W. Bidney, Michael V. Klibanov, Loc H. Nguyen, Lam H. Nguyen, Anders J. Sullivan and Vasily N. Astratov (2021), An inverse problem of a simultaneous reconstruction of the dielectric constant and conductivity from experimental backscattering data, Inverse Problems in Science and Engineering, 29:5, 712–735, https://doi.org/10.1080/17415977.2020.1802447

    Article  MathSciNet  MATH  Google Scholar 

  32. K. Ito, B. **, Inverse Problems: Tikhonov theory and algorithms, Series on Applied Mathematics, V.22, World Scientific, 2015.

    Google Scholar 

  33. S. Kabanikhin, A. Satybaev, and M. Shishlenin, Direct Methods of Solving Multidimensional Inverse Hyperbolic Problems, VSP, Ultrecht, The Netherlands, 2004.

    Book  MATH  Google Scholar 

  34. M. V. Klibanov, Inverse problems and Carleman estimates, Inverse Problems 8, 575–596, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  35. M. V. Klibanov, Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems, J. Inverse Ill-Posed Probl. 21, 477–560, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  36. M.V. Klibanov, Uniqueness of the solution of two inverse problems for a Maxwellian system, Computational Math. and Math.Phys., 26 (1986), 67–73.

    Article  Google Scholar 

  37. M. V. Klibanov and M. Yamamoto, Lipschitz stability of an inverse problem for an accoustic equation, Applicable Analysis 85, 515–538, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  38. Michael V. Klibanov, Aleksandr E. Kolesov, and Dinh-Liem Nguyen, Convexification Method for an Inverse Scattering Problem and Its Performance for Experimental Backscatter Data for Buried Targets, SIAM Journal on Imaging Sciences, 12(1) 2019 https://doi.org/10.1137/18M1191658

  39. N. Koshev and L. Beilina, An adaptive finite element method for Fredholm integral equations of the first kind and its verification on experimental data, Numerical Methods for Large Scale Scientific Computing, CEJM, 11(8), 1489–1509, 2013

    MathSciNet  MATH  Google Scholar 

  40. A. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann. of Math., 143 (1996), pp. 71–96.

    Article  MathSciNet  MATH  Google Scholar 

  41. R. G. Novikov, The \(\bar{\partial }\) approach to approximate inverse scattering at fixed energy in three dimensions, Internat. Math. Res. Papers, 6 (2005), pp. 287–349.

    Article  MathSciNet  MATH  Google Scholar 

  42. V. G. Romanov, M. V. Klibanov, Can a single PDE govern well the propagation of the electric wave field in a heterogeneous medium in 3D? Journal of Inverse and Ill-posed Problems https://doi.org/10.1515/jiip-2021-0085

  43. S. Li and M. Yamomoto Carleman estimate for Maxwell’s Equations in anisotropic media and the observability inequality, Journal of Physics: Conference Series, 12 (2005) 110–115.

    Google Scholar 

  44. S. Li and M. Yamamoto An inverse source problem for Maxwell’s equations in anisotropic media, Applicable Analysis, 84 (2005).

    Google Scholar 

  45. P. B.  Monk, Finite Element methods for Maxwell’s equations, Oxford University Press, 2003.

    Google Scholar 

  46. P. B.  Monk and A. K. Parrott, A dispersion analysis of finite element methods for Maxwell’s equations, SIAM J.Sci.Comput., 15, pp.916–937, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  47. J. Mueller and S. Siltanen, Direct reconstructions of conductivities from boundary measurements, SIAM J. Sci. Comp., 24 (2003), pp. 1232–1266.

    Article  MathSciNet  MATH  Google Scholar 

  48. C. D. Munz, P. Omnes, R. Schneider, E. Sonnendrucker and U. Voss, Divergence correction techniques for Maxwell Solvers based on a hyperbolic model, Journal of Computational Physics, 161, pp.484–511, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  49. N. T. Thánh, L. Beilina, M. V. Klibanov, and M. A. Fiddy, Reconstruction of the refractive index from experimental backscattering data using a globally convergent inverse method, SIAMJ. Sci. Comput., 36 (2014), pp. B273–B293.

    MATH  Google Scholar 

  50. N. T. Thánh, L. Beilina, M. V. Klibanov, M. A. Fiddy, Imaging of Buried Objects from Experimental Backscattering Time-Dependent Measurements using a Globally Convergent Inverse Algorithm, SIAM Journal on Imaging Sciences, 8(1), 757–786, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  51. A.N. Tikhonov, A.V. Goncharsky, V.V. Stepanov and A.G. Yagola, Numerical Methods for the Solution of Ill-Posed Problems, London: Kluwer, London, 1995

    Book  MATH  Google Scholar 

  52. M. Yamamoto, Uniqueness and stability in multidimensional hyperbolic inverse problems, J. Math. Pures Appl. 78, 65–98, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  53. E. Zastrow, S. K. Davis, M. Lazebnik, F. Kelcz, B. D. Veen, S. C. Hageness, Online repository of 3D Grid Based Numerical Phantoms for use in Computational Electromagnetics Simulations, https://uwcem.ece.wisc.edu/MRIdatabase/

Download references

Acknowledgements

The research of both authors is supported by the Swedish Research Council grant VR 2018-03661. The research of L.B. is supported also by the sabbatical programme at the Faculty of Science, University of Gothenburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Beilina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beilina, L., Lindström, E. (2023). A Posteriori Error Estimates and Adaptive Error Control for Permittivity Reconstruction in Conductive Media. In: Asadzadeh, M., Beilina, L., Takata, S. (eds) Gas Dynamics with Applications in Industry and Life Sciences. GKDLS GKDLS 2021 2022. Springer Proceedings in Mathematics & Statistics, vol 429. Springer, Cham. https://doi.org/10.1007/978-3-031-35871-5_7

Download citation

Publish with us

Policies and ethics

Navigation