Introduction to Biomaterials and Tissue Engineering

  • Chapter
  • First Online:
Biomaterials and Tissue Engineering

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL,volume 74))

  • 411 Accesses

Abstract

Biomaterials represent one of the most dynamic domains of the medical research. Humans have employed biomaterials, without naming them so, for millennia. Only in the last century the domain become organized and defined as biomaterials and medical devices. The latest advances permit doctors and scientist involved in the design and production of biomaterials to be one step closer to the deity concept. This chapter is especially devoted to general aspects related to biomaterials, historical evolution, principles, challenges and benefits. Being a complementary chapter to the Chap. 4. Biomaterials and Tissue Engineering, the most of the examples related to biomaterials are related to metals. Biomaterials are used to manufacture various devices needed to aid, substitute or replace a part or the entire function from a body organ, therefore augmenting, recovering, improving quality and prolonging life expectation of the patient. Nowadays, 3D printing can process complex body parts (like hearth valves or skin graft) and help patients to recover a normal life after surgery. But, biomaterials are also used in implants, spinal rods or bionic limbs. In addition, there is a whole world of biomaterials at the bottom of metric scale. Drug delivery systems based on nanocarriers have revolutionized the medicine with innovative therapies in which the drugs are delivered at specific targeted tissues, released under controlled external or internal stimuli, with more potent results and fewer side effects. The benefits of biomaterials research are so great that are influencing other domains as well. Here we can briefly mention the surface designs originating from geckos, shark skin or lotus effect and structural coloring, all with impact in automotive, clothing, painting, or military industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ashby M (2008) Materials—a brief history. Philos Mag Lett 88(9–10):749–755

    Article  CAS  Google Scholar 

  2. Vallet-Regi M (2022) Evolution of biomaterials. Front Mater 9

    Google Scholar 

  3. Engineering ToolBox (2008) Engineering materials. https://www.engineeringtoolbox.com/engineering-materials-properties-d_1225.html. Accessed Feb 2023

  4. Brito TO, Elzubair A, Araujo LS, Camargo SAD, Souza JLP, Almeida LH (2017) Characterization of the mandible Atta Laevigata and the bioinspiration for the development of a biomimetic surgical clamp. Mater Res-Ibero-Am J Mater 20(6):1525–1533

    CAS  Google Scholar 

  5. Chia HN, Wu BM (2015) Recent advances in 3D printing of biomaterials. J Biol Eng 9

    Google Scholar 

  6. Soliman MM, Chowdhury MEH, Islam MT, Musharavati F, Nabil M, Hafizh M, Khandakar A, Mahmud S, Nezhad EZ, Shuzan MNI, Abir FF (2022) A review of biomaterials and associated performance metrics analysis in pre-clinical finite element model and in implementation stages for total hip implant system. Polymers 14(20):4308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Petrini L, Wu W, Dordoni E, Meoli A, Migliavacca F, Pennati G (2012). Fatigue behavior characterization of nitinol for peripheral stents. Funct Mater Letter 5(1)

    Google Scholar 

  8. Wang XH (2019) Bioartificial organ manufacturing technologies. Cell Transplant 28(1):5–17

    Article  PubMed  Google Scholar 

  9. Francis A, Yang Y, Virtanen S, Boccaccini AR (2015) Iron and iron-based alloys for temporary cardiovascular applications. J Mater Sci-Mater Med 26(3)

    Google Scholar 

  10. Chua K, Khan I, Malhotra R, Zhu D (2021) Additive manufacturing and 3D printing of metallic biomaterials. Eng Regener 2:288–299

    Google Scholar 

  11. Hassan S, Ali MN, Ghafoor B (2022) Evolutionary perspective of drug eluting stents: from thick polymer to polymer free approach. J Cardiothoracic Surg 17(1)

    Google Scholar 

  12. Beshchasna N, Saqib M, Kraskiewicz H, Wasyluk L, Kuzmin O, Duta OC, Ficai D, Ghizdavet Z, Marin A, Ficai A, Sun ZL, Pichugin VF, Opitz J, Andronescu E (2020) Recent advances in manufacturing innovative stents. Pharmaceutics 12(4)

    Google Scholar 

  13. Mohanto N, Park YJ, Jee JP (2022) Current perspectives of artificial oxygen carriers as red blood cell substitutes: a review of old to cutting-edge technologies using in vitro and in vivo assessments. J Pharm Investig 53:153–190

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jansman MMT, Hosta-Rigau L (2018) Recent and prominent examples of nano- and microarchitectures as hemoglobin-based oxygen carriers. Adv Coll Interface Sci 260:65–84. https://doi.org/10.1016/j.cis.2018.08.006

    Article  CAS  Google Scholar 

  15. Zhao XR, Zhou JW, Du GC, Chen J (2021) Recent advances in the microbial synthesis of hemoglobin. Trends Biotechnol 39(3):286–297

    Article  CAS  PubMed  Google Scholar 

  16. Clark LC (1985) Introduction to fluorocarbons. Int Anesthesiol Clin 23(1):1–9

    Article  CAS  PubMed  Google Scholar 

  17. Moore RE, Clark LC (1985) Chemistry of fluorocarbons in biomedical use. Int Anesthesiol Clin 23(1):11–24

    Article  CAS  PubMed  Google Scholar 

  18. Persico DF, Huang HN, Lagow RJ, Clark LC (1985) A general-synthesis for symmetrical highly branched Perfluoro ethers—a new class of oxygen carriers. J Org Chem 50(25):5156–5159

    Article  CAS  Google Scholar 

  19. Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R (2021) Engineering precision nanoparticles for drug delivery. Nat Rev Drug Disc 20(2):101–124

    Article  CAS  Google Scholar 

  20. Birkett M, Dover L, Lukose CC, Zia AW, Tambuwala MM, Serrano-Aroca A (2022) Recent advances in metal-based antimicrobial coatings for high-touch surfaces. Int J Mol Sci 23(3)

    Google Scholar 

  21. Ficai D, Oprea O, Ficai A, Holban AM (2014) Metal oxide nanoparticles: potential uses in biomedical applications. Curr Proteomics 11(2):139–149

    Article  CAS  Google Scholar 

  22. Goral D, Goral-Kowalczyk M (2022) Application of metal nanoparticles for production of self-sterilizing coatings. Coatings 12(4)

    Google Scholar 

  23. Kim S, Somaratne RMDS, Grimm OC, Steeves DM, Soares JW, Pang R, Welsh EA, Whitten JE (2022) Surface segregation of zinc oxide nanoparticles in polymer films and fibers: implications for functionalized fabrics. ACS Appl Nano Mater 5(3):3992–3999

    Article  CAS  Google Scholar 

  24. Marinescu L, Ficai D, Oprea O, Marin A, Ficai A, Andronescu E, Holban AM (2020) Optimized synthesis approaches of metal nanoparticles with antimicrobial applications. J Nanomater

    Google Scholar 

  25. Motelica L, Ficai D, Oprea O, Ficai A, Trusca RD, Andronescu E, Holban AM (2021) Biodegradable alginate films with ZnO nanoparticles and citronella essential oil—a novel antimicrobial structure. Pharmaceutics 13(7)

    Google Scholar 

  26. Richardson JJ, Liao WT, Li JC, Cheng BH, Wang CY, Maruyama T, Tardy BL, Guo JL, Zhao LY, Aw WP, Ejima H (2022). Rapid assembly of colorless antimicrobial and anti-odor coatings from polyphenols and silver. Sci Rep 12(1)

    Google Scholar 

  27. Tiplea RE, Lemnaru GM, Trusca RD, Holban A, Kaya MGA, Dragu LD, Ficai D, Ficai A, Bleotu C (2021) Antimicrobial films based on chitosan, collagen, and ZnO for skin tissue regeneration. Biointerf Res Appl Chem 11(4):11985–11995

    CAS  Google Scholar 

  28. Petrisor G, Motelica L, Ficai D, Trusca RD, Surdu VA, Voicu G, Oprea OC, Ficai A, Andronescu E (2022) New mesoporous silica materials loaded with polyphenols: caffeic acid, ferulic acid and p-coumaric acid as dietary supplements for oral administration. Materials 15(22):7982

    Google Scholar 

  29. Kalirajan C, Dukle A, Nathanael AJ, Oh TH, Manivasagam G (2021) A critical review on polymeric biomaterials for biomedical applications. Polymers 13(17):3015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bazaka O, Bazaka K, Kingshott P, Crawford RJ, Ivanova EP (2021) The chemistry of inorganic biomaterials (vol. Metallic implants for biomedical applications). The Royal Society of Chemistry

    Google Scholar 

  31. Michas F (2021) Statista. https://www.statista.com/statistics/1211961/medical-3d-printing-facilities-hospitals-united-states/. Accessed Feb 2023

  32. Resnik M, Bencina M, Levicnik E, Rawat N, Iglic A, Junkar I (2020) Strategies for improving antimicrobial properties of stainless steel. Materials 13(13):2944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hryniewicz T (2018) Electropolishing processes for better implants’ performance. Biomed J Sci Techn Res 11(1):8262–8266

    Google Scholar 

  34. Zhou HL, Li JY, Li J, Ruan QD, Peng X, Li SJ, ** WH, Yu ZT, Chu PK, Li W (2021) A composite coating with physical interlocking and chemical bonding on WE43 magnesium alloy for corrosion protection and cytocompatibility enhancement. Surface Coat Technol 412

    Google Scholar 

  35. Popov VV, Muller-Kamskii G, Kovalevsky A, Dzhenzhera G, Strokin E, Kolomiets A, Ramon J (2018) Design and 3D-printing of titanium bone implants: brief review of approach and clinical cases. Biomed Eng Lett 8(4):337–344

    Article  PubMed  PubMed Central  Google Scholar 

  36. de Oliveira TG, Fagundes DV, Capellato P, Sachs D, da Silva AAAP (2022) A review of biomaterials based on high-entropy alloys. Metals 12(11):1940

    Article  Google Scholar 

  37. Tappa K, Jammalamadaka U (2018) Novel biomaterials used in medical 3D printing techniques. J Funct Biomater 9(1):17

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zaszczynska A, Moczulska-Heljak M, Gradys A, Sajkiewicz P (2021) Advances in 3D printing for tissue engineering. Materials 14(12):3149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bandyopadhyay A, Bose S, Das S (2015) 3D printing of biomaterials. MRS Bull 40(2):108–112

    Article  CAS  Google Scholar 

  40. Nagarajan N, Dupret-Bories A, Karabulut E, Zorlutuna P, Vrana NE (2018) Enabling personalized implant and controllable biosystem development through 3D printing. Biotechnol Adv 36(2):521–533

    Article  CAS  PubMed  Google Scholar 

  41. Biotechnology in Healthcare (2022) Technologies and innovations, vol 1. In: Barh D (ed). Academic Press

    Google Scholar 

  42. Hench LL, Thompson I (2010) Twenty-first century challenges for biomaterials. J R Soc Interface 7:S379–S391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kanno Y, Nakatsuka T, Saijo H, Fujihara Y, Atsuhiko H, Chung UI, Takato T, Hoshi K (2016) Computed tomographic evaluation of novel custom-made artificial bones, “CT-bone”, applied for maxillofacial reconstruction. Regener Ther 5:1–8

    Article  Google Scholar 

  44. Lian ZX, Xu JK, Wang ZB, Yu HD (2020) Biomimetic superlyophobic metallic surfaces: focusing on their fabrication and applications. J Bionic Eng 17(1):1–33

    Article  Google Scholar 

  45. Koch K, Bhushan B, Barthlott W (2009) Multifunctional surface structures of plants: an inspiration for biomimetics. Prog Mater Sci 54(2):137–178

    Article  CAS  Google Scholar 

  46. Nickerl J, Helbig R, Schulz HJ, Werner C, Neinhuis C (2013) Diversity and potential correlations to the function of Collembola cuticle structures. Zoomorphology 132(2):183–195

    Article  Google Scholar 

  47. Domel AG, Saadat M, Weaver JC, Haj-Hariri H, Bertoldi K, Lauder GV (2018) Shark skin-inspired designs that improve aerodynamic performance. J Roy Soc Interface 15(139)

    Google Scholar 

  48. Gao HJ, Wang X, Yao HM, Gorb S, Arzt E (2005) Mechanics of hierarchical adhesion structures of geckos. Mech Mater 37(2–3):275–285

    Article  Google Scholar 

  49. Ge Q, Sakhaei AH, Lee H, Dunn CK, Fang NX, Dunn ML (2016) Multimaterial 4D printing with tailorable shape memory polymers. Sci Rep 6

    Google Scholar 

  50. Medina JM, Diaz JA, Vukusic P (2015) Classification of peacock feather reflectance using principal component analysis similarity factors from multispectral imaging data. Opt Express 23(8):10198–10212

    Article  CAS  PubMed  Google Scholar 

  51. Burg SL, Parnell AJ (2018) Self-assembling structural colour in nature. J Phys-Conden Matter 30(41)

    Google Scholar 

  52. Zhang SC, Chen YF (2015) Nanofabrication and coloration study of artificial Morpho butterfly wings with aligned lamellae layers. Sci Rep 5

    Google Scholar 

  53. Sun JY, Bhushan B, Tong J (2013) Structural coloration in nature. RSC Adv 3(35):14862–14889

    Article  CAS  Google Scholar 

  54. Vukusic P, Sambles JR, Lawrence CR (2000) Structural colour—colour mixing in wing scales of a butterfly. Nature 404(6777):457–457

    Article  CAS  PubMed  Google Scholar 

  55. Vignolini S, Rudall PJ, Rowland AV, Reed A, Moyroud E, Faden RB, Baumberg JJ, Glover BJ, Steiner U (2012) Pointillist structural color in Pollia fruit. Proc Natl Acad Sci USA 109(39):15712–15715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Michalska M, Gambacorta F, Divan R, Aranson IS, Sokolov A, Noirot P, Laible PD (2018) Tuning antimicrobial properties of biomimetic nanopatterned surfaces. Nanoscale 10(14):6639–6650

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ovidiu Oprea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Motelica, L., Oprea, O., Ficai, D., Ficai, A. (2023). Introduction to Biomaterials and Tissue Engineering. In: Gunduz, O., Egles, C., Pérez, R.A., Ficai, D., Ustundag, C.B. (eds) Biomaterials and Tissue Engineering. Stem Cell Biology and Regenerative Medicine, vol 74. Springer, Cham. https://doi.org/10.1007/978-3-031-35832-6_1

Download citation

Publish with us

Policies and ethics

Navigation