Analysis of the Attractor-Based Search System

  • Chapter
  • First Online:
The Traveling Salesman Problem
  • 155 Accesses

Abstract

This chapter analyzes the search behavior of the ABSS in detail to answer three fundamental questions for the ABSS: (1) how can we construct the edge configuration of the attractor using a small set of local search trajectories? (2) what is the relationship between the size of the constructed attractor and the size of the TSP instance? and (3) is the best tour in the attractor the optimal tour in the solution space?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 37.44
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 48.14
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aarts, E., & Lenstra, J. K. (2003). Local search in combinatorial optimization. Princeton University Press.

    Book  MATH  Google Scholar 

  2. Abarbaanel, H. (1996). Analysis of observed chaotic data. Springer.

    Book  Google Scholar 

  3. Abarbanel, H., Brow, R., Sidorowich, J. J., & Tsimring, L. S. (1993). The analysis of observed chaotic data in physical systems. Reviews of Modern Physics, 65(2), 1331–1392. https://doi.org/10.1103/RevModPhys.65.1331

    Article  MathSciNet  Google Scholar 

  4. Alligood, K. T., Sauer, T. D., & Yorke, J. A. (1997). Chaos: Introduction to dynamical systems. Springer.

    Book  MATH  Google Scholar 

  5. Applegate, D. L., Bixby, R. E., Chvátal, V., & Cook, W. J. (2006). The traveling salesman problem: A computational study. Princeton University Press.

    MATH  Google Scholar 

  6. Arbieto, A., & Obata, D. (2015). On attractor and their basins. Involve, 8(2), 195–209. https://doi.org/10.2140/INVOLVE.2015.8.195

  7. Arrowsmith, D. K., & Place, C. M. (1990). An introduction to dynamical systems. Cambridge University Press.

    MATH  Google Scholar 

  8. Auslander, J., Bhatia, N. P., & Seibert, P. (1964). Attractors in dynamical systems. NASA Technical Report NASA-CR-59858.

    Google Scholar 

  9. Baudet, G. M. (1978). On the branching factor of the alpha-beta pruning algorithm. Artificial Intelligence, 10(2), 173–199. https://doi.org/10.1016/0004-3702(78)80011-3

    Article  MathSciNet  MATH  Google Scholar 

  10. Boese, K. D., Kahng, A. B., & Muddu, S. (1994). A new adaptive multi-start technique for combinatorial global optimization. Operation Research Letters, 16(2), 101–113. https://doi.org/10.1016/0167-6377(94)90065-5

    Article  MathSciNet  MATH  Google Scholar 

  11. Brin, M., & Stuck, G. (2016). Introduction to dynamical systems. Cambridge University Press.

    MATH  Google Scholar 

  12. Brock, W. (1986). Distinguishing random and deterministic systems: Abridged version. Journal of Economic Theory, 40(1), 168–195. https://doi.org/10.1016/0022-0531(86)90014-1

    Article  MathSciNet  MATH  Google Scholar 

  13. Broomhead, D. S., & King, G. P. (1987). Extracting qualitative dynamics from experimental data. Physica D: Nonlinear Phenomena, 20(2/3), 217–236. https://doi.org/10.1016/0167-2789(86)90031-X

    Article  MathSciNet  MATH  Google Scholar 

  14. Brown, R. J. (2018). A modern introduction to dynamical systems. Oxford University Press.

    MATH  Google Scholar 

  15. Buescu, J. (1991). Exotic attractors. Birkhäuser.

    Google Scholar 

  16. Chandra, B., Karloff, H., & Tovey, C. (1999). New results on the old k-opt algorithm for the traveling salesman problem. SIAM Journal on Computing, 28(6), 1998–2029. https://doi.org/10.1137/S0097539793251244

    Article  MathSciNet  MATH  Google Scholar 

  17. Collet, P., & Eckmann, J. P. (1980). Iterated maps on the interval as dynamical systems. Birkhäuser.

    MATH  Google Scholar 

  18. Cook, W., & Seymour, P. D. (2003). Tour merging via branch decomposition. INFORMS Journal on Computing, 15(3), 233–248. https://doi.org/10.1287/ijoc.15.3.233.16078

    Article  MathSciNet  MATH  Google Scholar 

  19. Cover, T., & Thomas, J. (1991). Elements of information theory. Wiley.

    Book  MATH  Google Scholar 

  20. Dantzig, G. B. (1963). Linear programming and extensions. Princeton University Press.

    Book  MATH  Google Scholar 

  21. Dantzig, G. B., Fulkerson, R., & Johnson, S. (1954). Solution of a large-scale traveling-salesman problem. Journal of the Operations Research Society of America, 2(4), 393–410. https://doi.org/10.1287/opre.2.4.393

    Article  MathSciNet  MATH  Google Scholar 

  22. Dénes, A., & Makey, G. (2011). Attractors and basins of dynamical systems. Electronic Journal of Qualitative Theory of Differential Equations, 20(20), 1–11. https://doi.org/10.14232/ejgtcle.2011

  23. Dorigo, M. (1992). Optimization, learning and natural algorithms. Ph.D thesis, Dip Electronica e Informazione, Politecnico Di Milano, Italy.

    Google Scholar 

  24. Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1(1), 53–66. https://doi.org/10.1109/4235.585892

    Article  Google Scholar 

  25. Dorigo, M., & Stützle, T. (2004). Ant colony optimization. The MIT Press.

    Book  MATH  Google Scholar 

  26. Edelkamp, S., & Korf, R. E. (1998). The branching factor of regular search spaces. In Proceeding of the 15th National Conference on Artificial Intelligence (pp. 292–304).

    Google Scholar 

  27. Feo, T. A., & Resende, M. G. (1995). Greedy randomized adaptive search procedure. Journal of Global Optimization, 6, 109–133. https://doi.org/10.1007/BF01096763

    Article  MathSciNet  MATH  Google Scholar 

  28. Fischer, S. T. (1995). A note on the complexity of local search problems. Information Processing Letters, 53(2), 69–75. https://doi.org/10.1016/0020-0190(94)00184-Z

    Article  MathSciNet  MATH  Google Scholar 

  29. Fogelberg, H. (1992). The phase space approach to complexity. Journal of Statistical Physics, 69, 411–425. https://doi.org/10.1007/BF01053799

    Article  MathSciNet  Google Scholar 

  30. Frazer, A. M., & Swinney, H. L. (1986). Independent coordinates for strange attractors from mutual information. Physical Review A, 33(2), 1134–1140. https://doi.org/10.1103/PhysRevA.33.1134

    Article  MathSciNet  MATH  Google Scholar 

  31. Freisleben, B., & Merz, P. (1996). A genetic local search algorithm for solving symmetric and asymmetric traveling salesman problems. In Proceedings of IEEE International Conference on Evolutionary Computation (pp. 616–621). IEEE.

    Google Scholar 

  32. Gagniuc, P. A. (2017). Markov chains: From theory to implementation and experimentation. John Wiley & Sons.

    Book  MATH  Google Scholar 

  33. Gallager, R. G. (1968). Information theory and reliable communication. Wiley.

    MATH  Google Scholar 

  34. Glover, F. (2000). Multi-start and strategic oscillation methods—Principles to exploit adaptive memory. In M. Laguna & J. L. Gonzales-Velards (Eds.), Computing tools for modeling optimization and simulation (pp. 1–25). Kluwer.

    Google Scholar 

  35. Glover, F., & Punnen, A. P. (1997). The traveling salesman problem: New solvable cases and linkages with the development of approximation algorithms. Journal of the Operational Research Society, 48(5), 502–510. https://doi.org/10.2307/3010508

    Article  MATH  Google Scholar 

  36. Grassberger, P., & Procaccia, I. (1983). Characterization of strange attractor. Physical Review Letters, 50(5), 346–349. https://doi.org/10.1103/PhysRevLett.50.346

    Article  MathSciNet  MATH  Google Scholar 

  37. Grover, L. K. (1992). Local search and the local structure of NP-complete problems. Operations Research Letters, 12(4), 235–243. https://doi.org/10.1016/0167-6377(92)90049-9

    Article  MathSciNet  MATH  Google Scholar 

  38. Hains, D., Whitley, D., & Howe, A. (2011). Revisiting the big valley search space structure in the TSP. Journal of Operational Research Society, 62(2), 305–312. https://doi.org/10.1057/jors.2010.116

    Article  Google Scholar 

  39. Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biametnika, 57(1), 97–109. https://doi.org/10.1093/biomet/57.1.97

    Article  MathSciNet  MATH  Google Scholar 

  40. Hawkins, J. (2021). Attractors in dynamical systems. In Ergodic dynamics. Graduate texts in mathematics (Vol. 289). Springer. https://doi.org/10.1007/978-3-030-59242-4_3

  41. Herley, M. (1982). Attractors: Persistence and density of their basins. Transactions of the American Mathematical Society, 269(1), 247–271. https://doi.org/10.1090/s0002-9947-1982-0637037-7

    Article  MathSciNet  Google Scholar 

  42. Hilborn, R. C. (1994). Chaos and nonlinear dynamics: An introduction for science and engineers. Oxford University Press.

    MATH  Google Scholar 

  43. Holzfuss, J., & Mayer-Kress, G. (1986). An approach to error-estimation in the application of dimension algorithm. In G. Mayer-Kress (Ed.), Dimensions and entropies in chaotic systems: Quantification of complex behavior (pp. 114–122). Springer.

    Chapter  Google Scholar 

  44. Johnson, D. S. (1990). Local optimization and the traveling salesman problem. In Proceedings of the 17th International Colloquium on Automata, Languages and Programming, ICALP1990 (pp. 446–461). Springer. https://doi.org/10.1007/BFb0032050

  45. Johnson, D. S., & McGeocj, L. A. (1995). The traveling salesman problem: A case study in local optimization. In E. Aarts & J. K. Lenstra (Eds.), Local search in combinatorial optimization. John Wiley & Sons.

    Google Scholar 

  46. Jones, T., & Forrest, S. (1995). Fitness distance correlation as a measure of problem difficulty for generic algorithm. In Proceedings of the Sixth International Conference on Genetic Algorithms (pp. 184–192). Morgan Kaufmann.

    Google Scholar 

  47. Kauffman, S., & Levin, S. (1987). Towards a general theory of adaptive walks on rugged landscapes. Journal of Theoretical Biology, 128(1), 11–45. https://doi.org/10.1016/S0022-5193(87)80029-2

    Article  MathSciNet  Google Scholar 

  48. Katok, A. B., & Hasselblatt, B. (1999). Introduction to the modern theory of dynamical systems. Cambridge University Press.

    MATH  Google Scholar 

  49. Kennel, M. B., Brown, R., & Abarbanel, H. D. I. (1992). Determining embedding dimension for phase-space reconstruction using a geometrical construction. Physical Review A, 45(6), 3403–3411. https://doi.org/10.1103/PhysRevA.45.3403

    Article  Google Scholar 

  50. Kirkpatrick, S., & Toulouse, G. (1985). Configuration space analysis of traveling salesman problem. Journal de Physique, 46(8), 1277–1292. https://doi.org/10.1051/jphys:019850046080127700

  51. Kolokoltsov, V. N. (2010). Nonlinear Markov process and kinetic equations. Cambridge University Press.

    Book  MATH  Google Scholar 

  52. Korf, R. E. (1985). Depth-first iterative deepening: An optimal admissible tree search. Artificial Intelligence, 27(1), 97–109. https://doi.org/10.1016/0004-3702(85)90084-0

    Article  MathSciNet  MATH  Google Scholar 

  53. Kroese, D. P., Taimre, T., & Botev, Z. I. (2011). Handbook of Monte Carlo methods. John Wiley & Sons.

    Book  MATH  Google Scholar 

  54. Laguna, M., & Martí, R. (1999). GRASP and path relinking for a 2-player straight line crossing minimization. INFORMS Journal on Computing, 11(1), 44–52. https://doi.org/10.1287/ijoc.11.1.44

    Article  MATH  Google Scholar 

  55. Lin, S. (1965). Computer solution of the traveling salesman problem. The Bell System Technical Journal, 44(10), 2245–2269. https://doi.org/10.1002/j.1538-7305.1965.tb04146.x

    Article  MathSciNet  MATH  Google Scholar 

  56. Lin, S., & Kernighan, B. W. (1973). An effective heuristic algorithm for the traveling salesman problem. Operations Research, 21(2), 498–516. https://doi.org/10.1278/opre.21.2.498

    Article  MathSciNet  MATH  Google Scholar 

  57. Macken, C. A., Hagan, P. S., & Perelson, A. S. (1991). Evolutionary walks on rugged landscapes. SIAM Journal of Applied Mathematics, 51(3), 799–827. https://doi.org/10.1137/0151040

    Article  MathSciNet  MATH  Google Scholar 

  58. Martin, O., Otto, S. W., & Felten, E. W. (1992). Large step Markov chains for the TSP incorporating local search heuristics. Operations Research Letters, 11(4), 219–224. https://doi.org/10.1016/0167-6377(92)90028-2

    Article  MathSciNet  MATH  Google Scholar 

  59. Merz, P., & Freisleben, B. (1998). Memetic algorithms and the fitness landscape of the graph bi-partitioning problem. In A. E. Eiben, T. Bäck, M. Schoemauer, & H. P. Schwefel (Eds.), Parallel problem solving from nature—PPSN V, LNCS 1948 (pp. 765–774). Springer.

    Chapter  Google Scholar 

  60. Merz, P., & Freisleben, B. (1999). Fitness landscapes and memetic algorithm design. In D. Corn, M. Dorigo, & F. Glover (Eds.), New ideas in optimization (pp. 245–260). McGraw-Hill.

    Google Scholar 

  61. Meyn, S., & Tweedie, R. L. (2009). Markov chains and stochastic stability. Cambridge University Press.

    Book  MATH  Google Scholar 

  62. Mézard, M., & Parisi, G. (1986). A replica analysis of the traveling salesman problem. Journal de Physique, 47(8), 1285–1296. https://doi.org/10.1051/jphys:019860047080128500

    Article  Google Scholar 

  63. Milnor, J. (1985). On the concept of attractor. Communications in Mathematical Physics, 99(2), 177–195. https://doi.org/10.1007/BF01212280

    Article  MathSciNet  MATH  Google Scholar 

  64. Milnor, J. (2010). Collected papers of John Milnor VI: Dynamical systems (1953–2000). American Mathematical Society.

    MATH  Google Scholar 

  65. Ott, E., Sauer, T., & Yorke, J. A. (1994). Co** with chaos: Analysis of chaotic data and the exploitation of chaotic systems. John Wiley & Sons.

    MATH  Google Scholar 

  66. Packard, N., Crutchfield, J. P., Farmer, J. D., & Shaw, R. S. (1980). Geometry from a time series. Physical Review Letters, 45(9), 712–716. https://doi.org/10.1103/PhysRevLett.45.712

    Article  Google Scholar 

  67. Padberg, M., & Rinaldi, G. (1991). A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems. SIAM Review, 33(1), 60–100. https://doi.org/10.1137/1033004

    Article  MathSciNet  MATH  Google Scholar 

  68. Papadimitriou, C. H., & Steiglitz, K. (1998). Combinatorial optimization: Algorithms and complexity. Dover Publications.

    MATH  Google Scholar 

  69. Parker, T. S., & Chua, L. O. (1990). Practical numerical algorithms for chaotic systems. Springer.

    MATH  Google Scholar 

  70. Pearl, J. (1982). The solution for the branching factor of the alpha-beta pruning algorithm and its optimality. Communication of the ACM, 25(8), 559–564. https://doi.org/10.1145/358589.358616

    Article  MathSciNet  MATH  Google Scholar 

  71. Ramsey, J. B., & Yuan, H. J. (1987). The statistical properties of dimension calculations using small data sets. Nonlinearity, 3(1), 155–176. https://doi.org/10.1088/0951-7715/3/1/009

    Article  MathSciNet  MATH  Google Scholar 

  72. Reeves, C. R. (1999). Landscapes, operators and heuristic search. Annals of Operations Research, 86, 473–490. https://doi.org/10.1023/A:1018983524911

    Article  MathSciNet  MATH  Google Scholar 

  73. Reidys, C. M., & Stadler, P. F. (2002). Combinatorial landscapes. SIAM Review, 44(1), 3–54. https://doi.org/10.1137/S0036144501395952

    Article  MathSciNet  MATH  Google Scholar 

  74. Resende, M. G., Martí, R., Gallego, M., & Duarte, A. (2010). GRASP and path relinking for the max–min diversity problem. Computer & Operations Research, 37(3), 498–508. https://doi.org/10.1016/j.cor.2008.05.011

    Article  MathSciNet  MATH  Google Scholar 

  75. Ruelle, D. (1981). Small random perturbations of dynamical systems and the definition of attractor. Communications in Mathematical Physics, 82, 137–151. https://doi.org/10.1007/BF01206949

    Article  MathSciNet  MATH  Google Scholar 

  76. Sauer, T., Yorke, J. A., & Casdagli, M. (1991). Embedology. Journal of Statistical Physics, 65(3/4), 579–616. https://doi.org/10.1007/BF01053745

    Article  MathSciNet  MATH  Google Scholar 

  77. Shammon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379–423 & 623–656. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

  78. Sorkin, G. B. (1991). Efficient simulated annealing on fractal energy landscapes. Algorithmica, 6, 367–418. https://doi.org/10.1007/BF01759051

    Article  MathSciNet  MATH  Google Scholar 

  79. Sourlas, N. (1986). Statistical mechanics and the traveling salesman problem. Europhysics Letter, 2(12), 919–923. https://doi.org/10.1209/0295-5075/2/12/006

    Article  Google Scholar 

  80. Takens, F. (1981). Detecting strange attractors in turbulence. Lecture Notes in MathematicsIn D. Rand & L. S. Young (Eds.), Dynamical systems and turbulence, Warwick 1980 (Vol. 898, pp. 366–382). Springer.

    Chapter  Google Scholar 

  81. Takens, F. (1985). On the numerical determination of the dimension of an attractor. In N. Breaksma, H. Broer, & F. Takens (Eds.), Dynamical systems and bifurcations (pp. 99–106). Springer.

    Chapter  Google Scholar 

  82. Tong, H., & Lim, K. S. (1980). Threshold, autoregression, limit cycles and cyclical data. Journal of the Royal Statistical Society, 42(3), 245–292. https://doi.org/10.1111/j.2517-6161.1980.tb01126.x

    Article  MATH  Google Scholar 

  83. Weinberger, E. D. (1990). Correlated and uncorrelated fitness landscapes and how to tell the difference. Biological Cybernetics, 63, 325–336. https://doi.org/10.1007/BF00202749

    Article  MATH  Google Scholar 

  84. Weinberger, E. D. (1991). Local properties of Kauffman’s N-k model: A tunably rugged energy landscape. Physics Review A, 44, 6399–6413. https://doi.org/10.1103/PhysRevA.44.6399

    Article  Google Scholar 

  85. Zhang, W. (2004). Configuration landscape analysis and backbone guided local search. Part I: Satisfiability and maximum satisfiability. Artificial Intelligence, 158(1), 1–26. https://doi.org/10.1016/j.artint.2004.04.001

  86. Zhang, W., & Looks, M. (2005). A novel local search algorithm for the traveling salesman problem that exploits backbones. In Proceedings of 19th International Joint Conference on Artificial Intelligence (pp. 343–348). ACM.

    Google Scholar 

  87. Zweig, G. (1995). An effective tour construction and improvement procedure for the traveling salesman problem. Operations Research, 43(6), 1049–1057. https://doi.org/10.1287/opre.43.6.1049

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiqi Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, W. (2024). Analysis of the Attractor-Based Search System. In: The Traveling Salesman Problem. Synthesis Lectures on Operations Research and Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-35719-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35719-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35718-3

  • Online ISBN: 978-3-031-35719-0

  • eBook Packages: Synthesis Collection of Technology (R0)

Publish with us

Policies and ethics

Navigation