Geometrical, Microstructural, and Chemical Characterization

  • Chapter
  • First Online:
Component Surfaces

Abstract

The chapter presents work on the geometric, structural, and chemical analysis of microscale surface structures. In the first part, the focus is on the technical and methodological developments themselves. Techniques as well as technical and methodological developments for the geometric characterization of surfaces, including the associated measuring instruments, data evaluation, and the characterization methods, are discussed. Furthermore, some special methods for the microstructural analysis of surface morphologies, in particular, with optical methods and by means of X-ray diffraction, are presented. The second part of this chapter deals with the application of microscopic, spectroscopic, and mass spectrometric techniques to characterize surfaces subjected to friction and wear. It is shown which information can be obtained with the methods mentioned and it is shown exemplarily how, on the one hand, technologies that have been developed for analysis can be used to generate defined surface structures. On the other hand, special microscopic surface structures have been developed that can also be used beneficially for the investigation of tribological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. En DIN, ISO 21920–2. Geometrische Produktspezifikation (GPS), (2021) Oberflächenbeschaffenheit: Profile-Teil 2: Begriffe und Kenngrüßen für die Oberflächenbeschaffenheit. Beuth Verlag, Berlin

    Google Scholar 

  2. En DIN, ISO 4287. Geometrische Produktspezifikation (GPS), (2010) Oberflächenbeschaffenheit: Tastschnittverfahren-Benennungen. Beuth Verlag, Berlin, Definitionen und Kenngrüßen der Oberflächenbeschaffenheit

    Google Scholar 

  3. En DIN, ISO 25178–2. Geometrische Produktspezifikation (GPS), (2012) Oberflächenbeschaffenheit: Flächenhaft-Teil 2: Begriffe und Oberflächen-Kenngrüßen. Beuth Verlag, Berlin

    Google Scholar 

  4. Stout K (1993) The development of methods for the characterisation of roughness in three dimensions. European Report EUR 15178N

    Google Scholar 

  5. Seewig J, Raid I, Wiehr C, George BA (2013) Robust evaluation of intensity curves measured by confocal microscopies. In: Optical measurement systems for industrial inspection VIII, vol 8788. SPIE, pp 200–212. https://doi.org/10.1117/12.2020551

  6. Seewig J, Böttner T, Broschart D (2011) Uncertainty of height information in coherence scanning interferometry. In: Optical measurement systems for industrial inspection VII, vol 8082. SPIE, pp 269–277. https://doi.org/10.1117/12.889796

  7. Raid I, Eifler M, Kusnezowa T, Seewig J (2015) Calibration of Ellipso-Height-Topometry with nanoscale gratings of varying materials. In: Optik 126, vol 23, pp 4591–4596. https://doi.org/10.1016/j.ijleo.2015.08.093

  8. BMBF (2014) Anwenderorientierte Assistenzsysteme zum sicheren Einsatz optischer Abstandssensoren

    Google Scholar 

  9. EMPIR (2021) Traceable industrial 3D roughness and dimensional measurement using optical 3D microsopy and optical distance sensors

    Google Scholar 

  10. Engeln-Müllges G, Uhlig F (2014) Numerical algorithms with C. Springer. ISBN: 3642646824

    Google Scholar 

  11. Raid I, Kusnezowa T, Seewig J (2013) Application of ordinary kriging for interpolation of micro-structured technical surfaces. Meas Sci Technol 24(9). https://doi.org/10.1088/0957-0233/24/9/095201

  12. ISO 3274 (1996) Geometrical Product Specifications (GPS)-Surface texture: profile method-nominal characteristics of contact (stylus) instruments (ISO 3274: 1996)

    Google Scholar 

  13. Seewig J, Ehret G (2011) Unsicherheitsbetrachtungen zur Formmessung an optischen Bauelementen auf der Basis von Bayes. Düsseldorf

    Google Scholar 

  14. Elster C (2007) Calculation of uncertainty in the presence of prior knowledge. Metrologia 44(2):111–116. ISSN: 0026-1394. https://doi.org/10.1088/0026-1394/44/2/002

  15. Baum M, Klumpp V, Hanebeck UD (2010) A Novel Bayesian method for fitting a circle to noisy points. In: 2010 13th international conference on information fusion. IEEE, 2010, pp 1–6. ISBN: 978-0-9824438-1-1. https://doi.org/10.1109/ICIF.2010.5711884

  16. Elster C, Toman B (2011) Bayesian uncertainty analysis for a regression model versus application of GUM supplement 1 to the least-squares estimate. Metrologia 48(5):233–240. ISSN: 0026-1394. https://doi.org/10.1088/0026-1394/48/5/001

  17. Lira I, Wöger W (2001) Bayesian evaluation of the standard uncertainty and coverage probability in a simple measurement model. Meas Sci Technol 12(8):1172–1179. ISSN:0957-0233. https://doi.org/10.1088/0957-0233/12/8/326

  18. Weise K, Woger W (1993) A Bayesian theory of measurement uncertainty. Meas Sci Technol 4(1):1–11. ISSN: 0957-0233. https://doi.org/10.1088/0957-0233/4/1/001

  19. Werman M, Keren D (2001) A Bayesian method for fitting parametric and nonparametric models to noisy data. IEEE Trans Pattern Anal Mach Intell 23(5):528–534. ISSN: 01628828. https://doi.org/10.1109/34.922710

  20. Keksel A, Ströer F, Seewig J (2018) Bayesian approach for circle fitting including prior knowledge. Surf Topogr Metrol Prop 6(3):035002. https://doi.org/10.1088/2051-672X/aad2b4

    Article  Google Scholar 

  21. Bolstad WM (2007) Introduction to Bayesian statistics, 2nd edn. Wiley, Hoboken, NJ. 0470141158

    Google Scholar 

  22. Ahn SJ, Rauh W, Warnecke H-J (2001) Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and parabola. Pattern Recognit. 34(12):2283–2303. ISSN: 00313203. https://doi.org/10.1016/S0031-3203(00)00152-7

  23. Davis PJ, Rabinowitz P (1984) Approximate integration in two or more dimensions. In: Methods of numerical integration. Elsevier, pp 344–417. ISBN: 9780122063602. https://doi.org/10.1016/B978-0-12-206360-2.50011-X

  24. Leach R (2013) Characterisation of areal surface texture. Springer. https://doi.org/10.1007/978-3-642-36458-7

    Article  Google Scholar 

  25. Blunt L, Jiang X (2003) Advanced techniques for assessment surface topography: development of a basis for 3D surface texture standards “SURFSTAND". Kogan Page Science, London. https://doi.org/10.1016/B978-1-903996-11-9.X5000-2

    Article  Google Scholar 

  26. Scott PJ (1996) Recent advances in areal charaterization. In: IX. Internationales Oberflächenkolloquium, pp.151–158

    Google Scholar 

  27. Wolf GW (1991) A FORTRAN subroutine for cartographic generalization. Comput Geosci 17(10):1359–1381. https://doi.org/10.1016/0098-3004(91)90002-U

    Article  Google Scholar 

  28. Soille P (2004) Morphological image analysis. Springer, Berlin Heidelberg. ISBN: 978-3-540-42988-3

    Google Scholar 

  29. Weidner A, Seewig J, Reithmeier E (2006) 3D roughness evaluation of cylinder liner surfaces based on structure-oriented parameters. Meas. Sci. Technol. 17:477–482. https://doi.org/10.1088/0957-0233/17/3/S03

    Article  CAS  Google Scholar 

  30. Schmidt K, Buhl S, Davoudi N, Godard C, Merz R, Raid I, Kerscher E, Kopnarski M, Müller-Renno C, Ripperger S, Seewig J, Ziegler C, Antonyuk S (2017) Ti surface modification by cold spraying with TiO2 microparticles. In: Surface and coatings technology, vol 309, pp 749–758. ISSN: 0257-8972. https://doi.org/10.1016/j.surfcoat.2016.10.091

  31. Rief S, Ströer F, Kieß S, Eifler M, Seewig J (2017) An approach for the simulation of ground and honed technical surfaces for training classifiers. Technologies 5(4). ISSN: 2227-7080. https://doi.org/10.3390/technologies5040066

  32. Eifler M, Ströer F, Rief S, Seewig J (2018) Model selection and quality estimation of time series models for artificial technical surface generation. Technologies 6(1). ISSN: 2227-7080. https://doi.org/10.3390/technologies6010003

  33. Schmidt S, Eifler M, Issel JC, de Payrebrune KM, Ströer F, Karatas A, Seewig J (2022) Parameter identification of an abrasive manufacturing process with machine learning of measured surface topography information. J Comput Inf Sci Eng 22(4):041010. ISSN: 1530-9827. https://doi.org/10.1115/1.4053670

  34. Hall EO (1951) The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc Sect B 64(9):747–753. https://doi.org/10.1088/0370-1301/64/9/303

    Article  Google Scholar 

  35. Bunge HJ (1982) Texture analysis in materials science. mathematical methods. Butterworth-Heinemann. ISBN: 9780408106429. https://doi.org/10.1016/C2013-0-11769-2

  36. Böhme L, Morales-Rivas L, Diederichs S, Kerscher E (2018) Crystal CAxis map** of hcp metals by conventional reflected polarized light microscopy: application to untextured and textured cp-titanium. Mater Charact 145:573–581. https://doi.org/10.1016/j.matchar.2018.09.024

    Article  CAS  Google Scholar 

  37. Morales-Rivas L, Diederichs S, Böhme L, Gordo E, Hebestreit A, Kerscher E (2018) Method for the detection of grain boundaries in? Ti-based alloys by means of polarized light microscopy and image processing in MATLAB. Pract Metallogr 55(10):678–692. https://doi.org/10.3139/147.110515

    Article  Google Scholar 

  38. Morales-Rivas L, Böhme L, Kerscher E (2020) Orientation map** of cp-Ti by Reflected Polarized Light Microscopy. In: Villechaise P, Appolaire B, Castany P, Dehmas M, Delaunay C, Delfosse J, Denquin A, Gautier E, Germain L, Gey N, Gloriant T, Hascoët J-Y, Hémery S, Millet Y, Monceau D, Pettinari-Sturmel F, Piellard M, Prima F, Viguier B (eds) MATEC web of conferences, vol 321, p 11096. https://doi.org/10.1051/matecconf/202032111096

  39. Klein MW, Krebs F, Smaga M, Beck T (2018) Preparation of polished sections and determination of the phase composition of highly metastable TRIP steel by microscopic and radiographic methods. Pract Metallogr 56:106–123

    Article  Google Scholar 

  40. Smaga M, Boemke A, Daniel T, Klein MW (2018) Metastability and fatigue behavior of austenitic stainless steels. In: MATEC web conference, vol 165. https://doi.org/10.1051/matecconf/201816504010

  41. Beraha E, Shpigler B (1977) Color metallography. American society for metals

    Google Scholar 

  42. Bish D, Howard S (1988) Quantitative Phase analysis using the rietveld method. J Appl Cryst 21:86–91

    Article  CAS  Google Scholar 

  43. Smaga M, Skorupski R, Eifler D, Beck T (2017) Microstructural characterization of cyclic deformation behavior of metastable austenitic stainless steel AISI 347 with different surface morphology. J Mater Res 32:4452–4460

    Article  CAS  Google Scholar 

  44. Smaga M, Skorupski R, Mayer P, Kirsch B, Aurich JC, Raid I, Seewig J, Man J, Eifler D, Beck T (2017) Influence of Surface Morphology on Fatigue Behavior of Metastable Austenitic Stainless Steel AISI 347 at Ambient Temperature and 300\(^\circ \)C. Proc Struct Integr 5:989–996

    Google Scholar 

  45. Skorupski R (2017) Einfluss der oberflächennahen Martensitbildung auf das LCFund HCF-Ermüdungsverhalten sowie die Verschleissfestigkeit des metastabilen austenitischen Stahls X6CrNiNb1810. Dissertation TU Kaiserslautern,

    Google Scholar 

  46. Standard AE (2013) Practice for X-ray determination of retained austenite in Steel with near random crystallographic orientation. ASTM, Conshohocken, PA

    Google Scholar 

  47. Mayer P, Kirsch B, Müller C, Hotz H, Müller R, Becker S, Harbou EV, Skorupski R, Boemke A, Smaga M, Eifler D, Beck T, Aurich JC (2018) Deformation induced hardening when cryogenic turning. CIRP J Manuf Sci Technol 23:6–19

    Article  Google Scholar 

  48. Bohley M, Reichenbach IG, Kieren-Ehses S, Heberger L, Arrabiyeh PA, Merz R, Böhme L, Hering J, Kirsch B, Kopnarski M et al (2018) Coating of ultra-small micro end mills: analysis of performance and suitability of eight different hard-coatings. J Manuf Mater Process 2(2):22. https://doi.org/10.3390/jmmp2020022

    Article  CAS  Google Scholar 

  49. Buhl S, Schmidt K, Sappok D, Merz R, Godard C, Kerscher E, Kopnarski M, Sauer B, Antonyuk S, Ripperger S (2015) Surface structuring of case hardened chain pins by cold-sprayed microparticles to modify friction and wear properties. Particuology 21:32–40. https://doi.org/10.1016/j.partic.2014.10.001

    Article  CAS  Google Scholar 

  50. Schmidt K, Buhl S, Davoudi N, Godard C, Merz R, Raid I, Kerscher E, Kopnarski M, Müller-Renno C, Ripperger S, Seewig J, Ziegler C, Antonyuk S (2017) Ti surface modification by cold spraying with TiO2 microparticles. Surf Coat Technol 309:749–758 j.surfcoat.2016.10.091

    Article  CAS  Google Scholar 

  51. Breuninger P, Krull F, Buhl S, Binder A, Merz R, Kopnarski M, Sachweh B, Antonyuk S (2019) Microstructuring of titanium surfaces with plasma- modified titanium particles by cold spraying. Particuology 44:90–104. https://doi.org/10.1016/j.partic.2018.08.002

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kopnarski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kopnarski, M., Beck, T., Diederichs, S., Kerscher, E., Seewig, J., Smaga, M. (2024). Geometrical, Microstructural, and Chemical Characterization. In: Aurich, J.C., Hasse, H. (eds) Component Surfaces. Springer Series in Advanced Manufacturing. Springer, Cham. https://doi.org/10.1007/978-3-031-35575-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35575-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35574-5

  • Online ISBN: 978-3-031-35575-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation