Part of the book series: Zoological Monographs ((ZM,volume 8))

Abstract

The avian respiratory system is fully described from the larynx to the pneumatization of various proximate bones of the body by the different air sacs. To prominence its morphological novelty, the complexity of the lung-air sac system of birds is compared particularly with the mammalian respiratory system: together with birds, mammals are the only other endothermic-homeotherms. The evolution, the structure, and the mode of sound production (vocalization) by the syrinx are outlined. The three-tiered arrangement of the airway (bronchial) system of the avian lung is delineated, and the functional significance of the assemblage is underscored. The morphologies of the terminal respiratory units, the minuscular air- and blood capillaries, are described, and the topographical arrangement between the bronchial- and the vascular systems of the avian lung that fashion the various gas exchange designs are explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdalla MA (1989) The blood supply to the lung. In: King AS, McLelland J (eds) Form and function in birds, vol 4. Academic Press, London, pp 281–306

    Google Scholar 

  • Abdalla MA, King AS (1975) The functional anatomy of the pulmonary circulation of the domestic fowl. Respir Physiol 23:267–290

    Article  CAS  PubMed  Google Scholar 

  • Abdalla MA, King AS (1976a) Pulmonary arteriovenous anastomoses in the avian lung: do they exist? Respir Physiol 27:187–191

    Article  CAS  PubMed  Google Scholar 

  • Abdalla MA, King AS (1976b) The functional anatomy of the bronchial circulation of the domestic fowl. J Anat 121:537–550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abdalla MA, King AS (1977) The avian bronchial arteries: species variations. J Anat 123:697–704

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abdalla MA, Maina JN (1981) Quantitative analysis of the exchange tissue of the avian lung (Galliformes). J Anat 134:677–680

    Google Scholar 

  • Abdalla MA, Maina JN, King AS, King DZ, Henry J (1982) Morphometrics of the avian lung. 1. The domestic fowl, Gallus domesticus. Respir Physiol 47:267–278

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Maksoud FM, Hussein MM, Hamdy A, Ibrahim IA (2020) Anatomical, histological, and electron microscopic structures of syrinx in male budgerigars (Melopsittacus undulatus). Microsc Microanal 26:1226–1235

    Article  CAS  PubMed  Google Scholar 

  • Aboelkassem Y, Staples AE (2013a) Stokeslets-meshfree computations and theory for flow in a collapsible microchannel. Theor Comput Fluid Dyn 27:681–700

    Article  CAS  Google Scholar 

  • Aboelkassem Y, Staples AE (2013b) Selective pum** in a network: insect-style microscale flow transport. Bioinspiration Biomimetics 8:026004. https://doi.org/10.1088/1748-3182/8/2/026004

    Article  PubMed  Google Scholar 

  • Abourachid A, Hackert R, Herbin M, Libourel PA, Lambert F, Gioanni H, Provini P, Blazevic P, Hugel V (2011) Bird terrestrial locomotion as revealed by 3D kinematics. Zoology 114:360–368

    Article  PubMed  Google Scholar 

  • Akester AR, Pomeroy DE, Purton MD (1973) Subcutaneous air pouches in marabu stock (Leptoptios curmeniferus). J Zool 170:493–499

    Article  Google Scholar 

  • Albersheim-Carter J, Blubaum A, Ballagh IH, Missaghi K, Siuda ER, McMurray G, Bass AH, Dubuc R, Kelley DB, Schmidt MF et al (2016) Testing the evolutionary conservation of vocal motoneurons in vertebrates. Respir Physiol Neurobiol 224:2–10

    Article  PubMed  Google Scholar 

  • Ames PL (1971) The morphology of the syrinx in passerine birds. Bull Peabody Mus Nat Hist 37:1094

    Google Scholar 

  • Angilletta MJ (2009) Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press, Oxford (UK)

    Book  Google Scholar 

  • Angilletta MJ, Niewiarowski PH, Navas CA (2002) The evolution of thermal physiology in ectotherms. J Therm Biol 27:249–268

    Article  Google Scholar 

  • Apostolaki NE, Rayfield EJ, Barrett PM (2015) Osteological and soft-tissue evidence for pneumatization in the cervical column of the ostrich (Struthio camelus) and observations on the vertebral columns of non-volant, semi-volant and semiaquatic birds. PLoS One 10(12):e0143834. https://doi.org/10.1371/journal.pone.0143834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Appel FW (2005) Sex dimorphism in the syrinx of the fowl. J Morphol 47:497–517

    Article  Google Scholar 

  • Araújo R, David R, Benoit J, Lungmus JK, Stoessel A, Barrett PM, Maisano JA, Ekdale E, Orliac M, Luo ZX et al (2022) Inner ear biomechanics reveals a Late Triassic origin for mammalian endothermy. Nature 409. https://doi.org/10.1038/s41586-022-04963-z

  • Badlangana NL, Adams JW, Manger PR (2009) The giraffe (Giraffa camelopardalis) cervical vertebral column: a heuristic example in understanding evolutionary processes? Zool J Linn Soc 155:736–757

    Article  Google Scholar 

  • Baile EM (1996) The anatomy and physiology of the bronchial circulation. J Aerosol Med 9:1–6

    Article  CAS  PubMed  Google Scholar 

  • Bailey L (1954) The respiratory currents in the tracheal system of the adult bee. J Exp Biol 31:589–595

    Article  CAS  Google Scholar 

  • Bairlein F, Fritz J, Scope A, Schwendenwein I, Stanclova G, van Dijk G, Meijer HAJ, Verhulst S, Dittami J (2015) Energy expenditure and metabolic changes of free-flying migrating northern bald ibis. PLoS One 10:e0134433. https://doi.org/10.1371/journal.pone.0134433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banzett RB, Nations CS, Barnas JL, Lehr JL, Jones JH (1987) Inspiratory aerodynamic valving in goose lungs depends on gas density and velocity. Respir Physiol 70:287–300

    Article  CAS  PubMed  Google Scholar 

  • Banzett RB, Nations CS, Wang N, Fredberg JJ, Butler PJ (1991) Pressure profiles show features essential to aerodynamic valving in geese. Respir Physiol 84:295–309

    Article  CAS  PubMed  Google Scholar 

  • Barkan CL, Zornik E (2020) Inspiring song: the role of respiratory circuitry in the evolution of vertebrate vocal behavior. Dev Neurobiol 80:31–41

    Article  PubMed  PubMed Central  Google Scholar 

  • Barkan CL, Kelley DB, Zornik E (2018) Premotor neuron divergence reflects vocal evolution. J Neurosci 38:5325–5337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bass AH (2014) Central pattern generator for vocalization: is there a vertebrate morphotype? Curr Opinion Neurobiol 28:94–100

    Article  CAS  Google Scholar 

  • Bass AH, Gilland EH, Baker R (2008) Evolutionary origins for social vocalization in a vertebrate hindbrain-spinal compartment. Science 321:417–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC (1993) Handbook of avian anatomy: Nomina anatomica avium, 2nd edn. Publications of the Nuttall Ornithological Club, Cambridge (MA)

    Google Scholar 

  • Bech C, Johansen K (1980) Ventiltatory and circulatory responses to hyperthermia in the mute swan (Cygnos olor). J Exp Biol 88:195–204

    Article  CAS  PubMed  Google Scholar 

  • Bech C, Johansen K, Maloiy GMO (1979) Ventilation and expired gas composition in the flamingo, Phoenicopterus ruber, during normal respiration and panting. Physiol Zool 52:313–328

    Article  Google Scholar 

  • Beddard FE (1886) Notes on the convoluted trachea of a curassow (Northocrax urumutum), and on the syrinx in some stocks. Proc Zool Soc (Lond) 1886:321–325

    Google Scholar 

  • Beddard FE (1898) The structure and classification of birds. Longmans, London

    Book  Google Scholar 

  • Bejdić P, Hadzimusic N, Seric-Haracic S, Maksimovic A, Lutvikadic I, Hrkovic-Porobija A (2021a) Morphology of the air sacs in crimson rosella (platycercus elegans) parrots. Adv Anim Vet Sci 9:1959–1963

    Article  Google Scholar 

  • Bejdić P, Katica A, Mlaćo N, Velić L, Ćutuk A, Čengić B (2021b) Gross morphological studies on the air sacs in rosy-faced parrots (Agapornis roseicollis). Adv Anim Vet Sci 9:989–993

    Article  Google Scholar 

  • Bennett T (1971) The adrenergic enervation of the pulmonary vasculature, the lung and the thoracic aorta, and on the presence of aortic bodies in the domestic fowl (Gallus gallus domesticus L.). Z Zellforsch mikrosk Anat 114:117–134

    Article  CAS  PubMed  Google Scholar 

  • Bennett A, Ruben J (1979) Endothermy and activity in vertebrates. Science 206:649–654

    Article  CAS  PubMed  Google Scholar 

  • Benson RBJ, Butler RJ, Carrano MT, O’Connor PM (2012) Air-filled postcranial bones in theropod dinosaurs: physiological implications and the ‘reptile’ - bird transition. Biol Rev 87:168–193

    Article  PubMed  Google Scholar 

  • Benton MJ (2021) The origin of endothermy in synapsids and archosaurs and arms races in the Triassic. Gondwana Res 100:261–289

    Article  Google Scholar 

  • Bernhard W (2016) Lung surfactant: function and composition in the context of development and respiratory physiology. Ann Anat 208:146–150

    Article  PubMed  Google Scholar 

  • Bernhard W, Gebert A, Vieten G, Rau GA, Hohlfeld JM, Postle AD, Freihorst J (2001) Pulmonary surfactant in birds: cco** with surface tension in a tubular lung. Am J Physiol Regul Integr Comp Physiol 281:R327–R337

    Article  CAS  PubMed  Google Scholar 

  • Bernhard W, Haslam PI, Floros J (2004) From birds to humans new concepts on airways relative to alveolar surfactant. Am J Respir Cell Mol Biol 30:6–11

    Article  CAS  PubMed  Google Scholar 

  • Bewig M, Mitchell MA (2009) Wildlife. In: Mitchell MA, Tully TN (eds) Manual of exotic pet practice. WB Saunders, Saint Louis, pp 493–529

    Chapter  Google Scholar 

  • Bezuidenhout AJ (1998) Anatomy. In: Deeming DC (ed) The ostrich: biology, production and health. CABI, Washington, DC, pp 13–50

    Google Scholar 

  • Bezuidenhout AJ (2005) Light and electron microscopic study of the thoracic respiratory air sacs of the fowl. Anat Histol Embryol 34:185–191

    Article  CAS  PubMed  Google Scholar 

  • Bezuidenhout AJ, Groenewald HB, Soley JT (1999) An anatomical study of the respiratory air sacs in ostriches. Onderst J Vet Res 66:317–325

    CAS  Google Scholar 

  • Biggs PM, King AS (1957) A new experimental approach to the problem of the air pathway within the avian lung. J Physiol (Lond) 138:282–289

    Article  CAS  PubMed  Google Scholar 

  • Birdcage (2021) Why is my parrot sneezing and coughing? https://www.birdcagesnoe.com/blogs/bird-blog/parrot-sneezing-and-coughing. Retrieved 21-06-2021

  • Biro GP (2013) From the atmosphere to the mitochondrion: the oxygen cascade. In: Kim H, Greenburg A (eds) Hemoglobin-based oxygen carriers as red cell substitutes and oxygen therapeutics. Springer, Berlin, pp 27–53

    Chapter  Google Scholar 

  • Bishop CM, Butler PJ (2015) Flight. In: Scanes CG (ed) Sturkie’s avian physiology, 6th edn. Academic Press, New York, pp 919–974

    Chapter  Google Scholar 

  • Bock WJ (1978) Morphology of the larynx of Corvus brachyrhynchos (Passeriformes: Corvidae). Wilson Bull 90:553–565

    Google Scholar 

  • Bódi I, Kocsis K, Benyeda Z, Fejsz N, Molnár D, Nagy N, Olah I (2016) Dual secretion locations on type-II cells in the avian lung suggest local as well as general roles of surfactant. J Morphol 277:1062–1071

    Article  PubMed  Google Scholar 

  • Böhmer C, Plateau O, Cornette R, Abourachid A (2019) Correlated evolution of neck length and leg length in birds. R Soc Open Sci 6:181588. https://doi.org/10.1098/rsos.181588

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonebrake TC, Rezende EL, Bozinovic F (2020) Climate change and thermoregulatory consequences of activity time in mammals. Am Nat 196:45–56

    Article  PubMed  Google Scholar 

  • Bourbon JR, Chailley-Heu B (2001) Surfactant proteins in the digestive tract, mesentery, and other organs: evolutionary significance. Comp Biochem Physiol A Mol Integr Physiol 129:151–161

    Article  CAS  PubMed  Google Scholar 

  • Bout RG (1997) Postures of the avian craniocervical column. J Morphol 231:287–295

    Article  CAS  PubMed  Google Scholar 

  • Brackenbury JH (1977) Physiological energetics of cock crow. Nature 270:433–435

    Article  Google Scholar 

  • Brackenbury JH (1978) Respiratory mechanics of sound production in chickens and geese. J Exp Biol 72:229–250

    Article  Google Scholar 

  • Brackenbury JH (1989) Functions of the syrinx and the control and sound production. In: King AS, McLelland J (eds) Form and function in birds, vol 4. Academic Press, London, pp 193–220

    Google Scholar 

  • Brackenbury J, Amaku J (1990) Effects of combined abdominal and thoracic air-sac occlusion on respiration in domestic fowl. J Exp Biol 152:93–100

    Article  Google Scholar 

  • Brackenbury JH, Darby C, El-Sayed MS (1989) Respiratory function in exercising fowl following occlusion of the thoracic air sacs. J Exp Biol 145:227–237

    Article  Google Scholar 

  • Bradley TJ (2007) Control of the respiratory patterns in insects. In: Roach RC, Wagner PD, Hackett PH (eds) Hypoxia and the circulation. Springer, New York (NY), pp 211–220

    Chapter  Google Scholar 

  • Bretz WL, Schmidt-Nielsen K (1971) Bird respiration: flow patterns in the duck lung. J Exp Biol 54:103–118

    Article  CAS  PubMed  Google Scholar 

  • Brocklehurst RJ, Schachner ER, Sellers WI (2018) Vertebral morphometrics and lung structure in non-avian dinosaurs. Open Sci 5:180983. https://doi.org/10.1098/rsos.180983

    Article  Google Scholar 

  • Brocklehurst RJ, Schachner ER, Codd JR, Sellers WI (2020) Respiratory evolution in archosaurs. Philos Trans R Soc (Lond) B 375:20190140. https://doi.org/10.1098/rstb.2019.0140

    Article  Google Scholar 

  • Brody JS, Stemmler EJ, DuBois AB (1968) Longitudinal distribution of vascular resistance in the pulmonary arteries, capillaries, and veins. J Clin Invest 47:783–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown RE, Kovacs CE, Butler JP, Wang N, Lehr J, Banzett RB (1995) The avian lung: is there an aerodynamic expiratory valve? J Exp Biol 198:2349–2357

    Article  CAS  PubMed  Google Scholar 

  • Brown RE, Brain JD, Wang N (1997) The avian respiratory system: a unique model for studies of respiratory toxicosis and for monitoring air quality. Environm Hlth Perspect 105:188–200

    Article  CAS  Google Scholar 

  • Browning GR, Eshar D, Tucker-Mohl K, Berke K (2019) Diagnosis and surgical repair of a chronic ruptured cervical air sac in a double yellow-headed amazon parrot (Amazona Ochrocephala Oratrix). J Exotic Pet Med 29:45–50

    Article  Google Scholar 

  • Brusatte SL, O’Connor JK, Jarvis ED (2015) The origin and diversification of birds. Curr Biol 25:888–898

    Article  Google Scholar 

  • Buck J (1962) Some physical aspects of insect respiration. Ann Rev Entomol 7:27–56

    Article  Google Scholar 

  • Burn A, Schneiter M, Ryser M, Gehr P, Rička J, Frenz M (2022) A quantitative interspecies comparison of the respiratory mucociliary clearance mechanism. Europ Biophys J 51:51–65

    Article  CAS  Google Scholar 

  • Butler PJ (1991) Exercise in birds. J Exp Biol 160:233–262

    Article  Google Scholar 

  • Butler PJ (2016) The physiological basis of bird flight. Philos Trans R Soc (Lond) B 371:20150384. https://doi.org/10.1098/rstb.2015.0384

    Article  Google Scholar 

  • Buttemer WA, Abele D, Costantini D (2010) The ecology of antioxidants and oxidative stress in animals: from bivalves to birds: oxidative stress and longevity. Funct Ecol 24:971–983

    Article  Google Scholar 

  • Calder WA (1968) Respiratory and heart rates of birds at rest. Condor 70:358–365

    Article  Google Scholar 

  • Cameron JN (1989) The respiratory physiology of animals. Oxford University Press, New York

    Google Scholar 

  • Carlson HC, Beggs EC (1973) Ultrastructure of the abdominal air sac of the fowl. Res Vet Sci 14:148–150

    Article  CAS  PubMed  Google Scholar 

  • Casteleyn C, Cornillie P, Van Cruchten S, Van den Broeck W, Van Ginneken C, Simoens P (2018) Anatomy of the lower respiratory tract in domestic birds, with emphasis on respiration. Anat Histol Embryol 47:89–99

    Article  CAS  PubMed  Google Scholar 

  • Castranova V, Rabovsky J, Tucker JH, Miles PR (1988) The alveolar type-II epithelial cell: a multifunctional pneumocyte. Toxicol Appl Pharmacol 93:472–483

    Article  CAS  PubMed  Google Scholar 

  • Cevik-Demirkan A, Kürtül I, Haziroglu RM (2006) Gross morphological features of the lung and air sac in the Japanese quail. J Vet Med Sci 68:909–913

    Article  CAS  PubMed  Google Scholar 

  • Chamberlain DR, Gross WR, Cornwell GW, Mosby HS (1968) Syringeal anatomy, in the common crow. Auk 89:244–252

    Google Scholar 

  • Chandra P, Bharadwaj MB (1971) Histology and certain histochemical studies on the respiratoty system of chicken. II. Trachea, syrinx bronchi and lungs. Indian J Anim Sci 41:37–45

    Google Scholar 

  • Chapman RF (1998) The insects: structure and function. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Chen Z, Wiens JJ (2020) The origins of acoustic communication in vertebrates. Nature Commun 11:369. https://doi.org/10.1038/s41467-020-14356-3

    Article  CAS  Google Scholar 

  • Cieri RL, Farmer CG (2016) Unidirectional pulmonary airflow in vertebrates: a review of structure, function, and evolution. J Comp Physiol B 186:541–552

    Article  PubMed  Google Scholar 

  • Cieri RL, Farmer CG (2020) Computational fluid dynamics reveals a unique net unidirectional pattern of pulmonary airflow in the savannah monitor lizard (Varanus exanthematicus). Anat Rec 303:1768–1791

    Article  Google Scholar 

  • Cieri R, Craven B, Schachner E, Farmer CG (2014) New insight into the evolution of the vertebrate respiratory system and the discovery of unidirectional airflow in iguana lungs. Proc Natl Acad Sci (USA) 111:17218–17223

    Article  PubMed  Google Scholar 

  • Cieri RL, Moritz S, Capano JG, Brainerd EL (2018) Breathing with floating ribs: XROMM analysis of lung ventilation in savannah monitor lizards. J Exp Biol 221:jeb.189449. https://doi.org/10.1242/jeb.189449

    Article  Google Scholar 

  • Clarke A, Rothery P (2008) Scaling of body temperature in mammals and birds. Funct Ecol 22:58–67

    Google Scholar 

  • Clarke JA, Chatterjee S, Zhiheng L, Riede T, Agnolin F, Goller F, Isasi MP, Martinioni DR, Mussel FJ, Novas FE (2016) Fossil evidence of the avian vocal organ from the Mesozoic. Nature538:502–505

    Article  PubMed  Google Scholar 

  • Clench M (1978) Tracheal elongation in birds of paradise. Condor 80:423–430

    Article  Google Scholar 

  • Clip**er TL (1997) Diseases of the lower respiratory tract of companion birds. Semin Avian Exotic Pet Med 6:201–208

    Article  Google Scholar 

  • Coitier V (1573) (Cited by Campana 1875) Anatomia avium. In: Externum et internarum praecipalium humani corporis partium tabulae atque anatomicae exercitationes observationesque varieae. Norimbergae, pp 130–133

    Google Scholar 

  • Comroe JH (1974) Physiology of respiration: an introductory text. YearBook Medical Publishers, Chicago (IL)

    Google Scholar 

  • Cook RD, King AS (1970) Observations on the ultrastructure of the smooth muscle and its innervation in the avian lung. J Anat 106:273–283

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cook RD, Vaillant CR, King AS (1986) The abdominal air sac ostium of the domestic fowl: a sphincter regulated by neuro-epithelial cells? J Anat 149:101–111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cook RD, Vaillant CR, King AS (1987) The structure and innervation of the saccopleural membrane of the domestic fowl, Gallus gallus: an ultrastructural and immunohistochemical study. J Anat 150:1–9

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coughtrey M (1873) Note respecting the tracheal pouch of the emu. Ann Mag Nat Hist 12:217–218

    Article  Google Scholar 

  • Cover MS (1953) Gross and microscopic anatomy of the respiratory system of the turkey. II. The larynx, trachea, syrinx bronchi and lungs. Am J Vet Res 14:239–238

    CAS  PubMed  Google Scholar 

  • Cozic AM, Homberger DG (2015) The paired cervico-cephalic air sacs and their role in the vocalizations of songbirds. FASEB J 29(S1):867.9. https://doi.org/10.1096/faseb.29.1_supplement.867.9

    Article  Google Scholar 

  • Cozic AM, Homberger DG (2016) The role of cervical air sacs in the vocalization of songbirds. Anat Rec 299 (Special Feature: ICVM11-2016 Program and Abstracts) 41:258–259

    Google Scholar 

  • Cozic AM, Suthers RA, Homberger DG (2014) The cervical cutaneous and subcutaneous structures in songbirds and their possible roles in vocalization. FASEB J 918:10. https://doi.org/10.1096/fasebj.28.1_supplement.918.10

    Article  Google Scholar 

  • Crawford NG, Faircloth BC, McCormack JE, Brumfield RT, Winker K, Glenn TC (2012) More than 1000 ultraconserved elements provide evidence that turtles are the sister group archosuars. Biol Letts 8:783–786

    Article  Google Scholar 

  • Crespo R, Yamashiro S, Hunter DB (1998) Development of the thoracic air sacs of turkeys with age and rearing conditions. Avian Dis 42:35–44

    Article  CAS  PubMed  Google Scholar 

  • Daniels CB, Orgeig S (2001) The comparative biology of pulmonary surfactant: past, present and future. Comp Biochem Physiol A Mol Integr Physiol 129:9–36

    Article  CAS  PubMed  Google Scholar 

  • Daniels CB, Orgeig S (2003) Pulmonary surfactant: the key to the evolution of air breathing. News Physiol Sci 18:151–157

    CAS  PubMed  Google Scholar 

  • Daniels CB, Barr HA, Power JHT, Nicholas TE (1990) Body temperature alters the lipid composition of pulmonary surfactant in the lizard Ctenophorus nuchalis. Exp Lung Res 16:435–449

    Article  CAS  PubMed  Google Scholar 

  • Daniels CB, Orgeig S, Wilsen J, Nicholas TE (1994) Pulmonary-type surfactants in the lungs of terrestrial and aquatic amphibians. Respir Physiol 95:249–258

    Article  CAS  PubMed  Google Scholar 

  • Daniels CB, Orgeig S, Smits AW (1995) The composition and function of reptilian pulmonary surfactant. Respir Physiol 102:121–135

    Article  CAS  PubMed  Google Scholar 

  • De Kok-Mercado F, Habib M, Phelps T, Gailloud P (2013) Adaptations of the owl’s cervical and cephalic arteries in relation to extreme neck rotation. Science 339:514–514

    Google Scholar 

  • De Souza RBB, Bonfim VMG, Rios VP, Klein W (2021) Allometric relations of respiratory variables in Amniota: effects of phylogeny, form, and function. Comp Biochem Physiol A: Mol Integr Physiol 252:110845. https://doi.org/10.1016/j.cbpa.2020.110845

    Article  CAS  PubMed  Google Scholar 

  • Deffebach ME, Charan NB, Lakshminarayan S, Butler J (1987) The bronchial circulation. Small, but a vital attribute of the lung. Am Rev Respir Dis 135:463–481

    CAS  PubMed  Google Scholar 

  • del Corral JPD (1995) Anatomy and histology of the lung and air sacs of birds. In: Pastor LM (ed) Histology, ultrastructure and immunohistochemistry of the respiratory organs in non-mammalian vertebrtaes. Publicaciones de la Universitatd de University of Murcia, Murcia, pp 179–233

    Google Scholar 

  • Demirkan AC, Kurtul I, Hazroglu RM (2006a) Gross morphological features of the lung and air sac in the Japanese quail. J Vet Med Sci 68:909–913

    Article  Google Scholar 

  • Demirkan AC, Haziroglu RM, Kurtul I (2006b) Air sacs (sacci pneumatici) in mallard ducks (Anas platyrhynchos). Ankara Univ Vet Fak Derg 53:75–78

    Google Scholar 

  • Dickinson MH, Farley CT, Full RJ, Koehl MAR, Kram R, Lehman S (2000) How animals move: an integrative view. Science 288:100–106

    Article  CAS  PubMed  Google Scholar 

  • Doĝan GK, Takici I (2018) Anatomy of respıratory system in poultry. MAE Vet Fak Derg 3:141–147

    Google Scholar 

  • Dominelli P, Wiggins C, Roy T, Secomb T, Curry T, Joyner M (2021) The oxygen cascade during exercise in health and disease. Mayo Clinic Proc 96:1017–1032

    Article  CAS  Google Scholar 

  • Dotterweich H (1930) Die Bahnhofstauben und die Frage nach dem Weg der Atemlauft. Zool Anz 90:253–262

    Google Scholar 

  • Dudley R (1998) Atmospheric oxygen, giant Paleozoic insects, and the evolution of aerial locomotor performance. J Exp Biol 201:1043–1050

    Article  CAS  PubMed  Google Scholar 

  • Dudley R (2000) The Biomechanics of insect flight: form, function, evolution. Princeton University Press, Princeton (NJ)

    Book  Google Scholar 

  • Duncan FD, Byrne MJ (2002) Respiratory airflow in a wingless dung beetle. J Exp Biol 205:2489–2497

    Article  PubMed  Google Scholar 

  • Duncker HR (1971) The lung-air sac system of birds. A contribution to the functional anatomy of the respiratory apparatus. Ergebn Anat EntwGesch 45:1–171

    Google Scholar 

  • Duncker HR (1972) Structure of the avian lung. Respir Physiol 14:4–63

    Article  Google Scholar 

  • Duncker HR (1974) Structure of the avian respiratory tract. Respir Physiol 22:1–34

    Article  CAS  PubMed  Google Scholar 

  • Duncker H-R (1978a) Development of the avian respiratory and circulatory systems. In: Piiper J (ed) Respiratory function in birds, adult and embryonic. Springer, Berlin, pp 260–273

    Chapter  Google Scholar 

  • Duncker H-R (1978b) General morphological principles of amniotic lungs. In: Piiper J (ed) Respiratory function in birds, adult and embryonic. Springer, Heidelberg, pp 1–18

    Google Scholar 

  • Duncker HR (1979) Die funktionelle Anatomie des Lungen-Luftsack-Systems der Vögel - mit besonderer Berücksichtigung der Greivögel. Der Prakt Tierarzt 60:209–218

    Google Scholar 

  • Eberth CJ (1863) Uber den feineren bau der lunge. Z Wiss Zool 12:427–454

    Google Scholar 

  • El-Bably SH, Rezk HM, Tolba AR (2014) Gross morphological studies on the air sacs (saccipneumatici) of Golden Pekin duck (Anas platyrhynchus). Haryana Vet 53:13–17

    Google Scholar 

  • Elemans C, Rasmussen J, Herbst C, Düring DN, Zollinger SA, Brumm H, Srivastava K, Svane N, Ding M, Larsen ON, Sober SJ, Švec JG (2015) Universal mechanisms of sound production and control in birds and mammals. Nat Commun 6:8978. https://doi.org/10.1038/ncomms9978

    Article  CAS  PubMed  Google Scholar 

  • Ellington CP (1984) The aerodynamics of hovering insect flight. VI. Lift and power requirements. Philos Trans R Soc (Lond) B 305:145–181

    Article  Google Scholar 

  • Ellington CP, Machin KE, Casey TM (1990) Oxygen consumption of bumblebees in forward flight. Nature 347:472–473

    Article  Google Scholar 

  • El-Sayed AK, Hassan S (2020) Gross morphological features of the air sacs of the hooded crow (Corvus cornix). Anat Histol Embryol 49:159–166

    Article  PubMed  Google Scholar 

  • Erdoğan S, Sağsöz H, Paulsen F (2015) Functional anatomy of the syrinx of the chukar partridge (galliformes: Alectoris chukar) as a model for phonation research. Anat Rec 298:602–617

    Article  Google Scholar 

  • Erwin TL (1991) How many species are there? Revisited. Conserv Biol 5:330–333

    Article  Google Scholar 

  • Farmer CG (2006) On the origin of avian air sacs. Respir Physiol Neurobiol 154:89–106

    Article  CAS  PubMed  Google Scholar 

  • Farmer CG (2010) The provenance of alveolar and parabronchial lungs: Insights from paleoecology and the discovery of cardiogenic, unidirectional airflow in the American alligator (Alligator mississippiensis). Physiol Biochem Zool 83:561–575

    Article  CAS  PubMed  Google Scholar 

  • Farmer CG (2015a) The evolution of unidirectional pulmonary airflow. Physiology 30:260–272

    Article  CAS  PubMed  Google Scholar 

  • Farmer CG (2015b) Similarity of crocodilian and avian lungs indicates unidirectional flow is ancestral for archosaurs. Integr Comp Biol 55:962–971

    CAS  PubMed  Google Scholar 

  • Farmer CG (2017) Pulmonary transformations of vertebrates. In: Maina JN (ed) The biology of the avian respiratory system: evolution, development, structure and function. Springer, Heidelberg, pp 99–112

    Chapter  Google Scholar 

  • Farmer CG, Sanders K (2010) Unidirectional airflow in the lungs of alligators. Science 327:338–340

    Article  CAS  PubMed  Google Scholar 

  • Fedde MR (1980) The structure and gas flow pattern in the avian lung. Poult Sci 59:2642–2653

    Article  CAS  PubMed  Google Scholar 

  • Fedde MR (1998) Relationship of structure and function of the avian respiratory system to disease susceptibility. Poult Sci 77:1130–1138

    Article  CAS  PubMed  Google Scholar 

  • Fee MS, Shraiman B, Pesaran B, Mitra PP (1998) The role of nonlinear dynamics of the syrinx in the vocalizations of a songbird. Nature 395:67–71

    Article  CAS  PubMed  Google Scholar 

  • Fischer G (1905) Vergleichende anatomische Untersuchungen über den Bronchial baum der Vögel. Zoologica Stuttg 19:1–46

    Google Scholar 

  • Fitch WT (1999) Acoustic exaggeration of size in birds via tracheal elongation: comparative and theoretical analyses. J Zool (Lond)248:31–48

    Article  Google Scholar 

  • Fletcher OJ (1980) Pathology of the avian respiratory system. Poult Sci 59:2666–2679

    Article  CAS  PubMed  Google Scholar 

  • Fristoe TS, Burger JR, Balk MA, Khaliq I, Hof C, Brown JH (2015) Metabolic heat production and thermal conductance are mass-independent adaptations to thermal environment in birds and mammals. Proc Natl Acad Sci (USA) 112:15934–15939

    Article  CAS  PubMed  Google Scholar 

  • Frith CB (1994) Adaptive significance of tracheal elongation in manucodes (Paradisaeidae). Condor96:552–555

    Article  Google Scholar 

  • Fujii S, Tamura T, Okamoto T (1981) Microarchitecture of air capillaries and blood capillaries in the respiratory area of the hen’s lung examined by scanning electron microscopy (Gallus gallus). Jap J Vet Sci 43:83–88

    Article  CAS  Google Scholar 

  • Fuxjager MJ, Schlinger BA (2015) Perspectives on the evolution of animal dancing: a case study of manakins. Curr Opin Behav Sci 6:7–12

    Article  Google Scholar 

  • Gaban-Lima R, Höfling E (2006) Comparative anatomy of the syrinx in the Tribe Arini (Aves: Psittacidae). Braz J Morphol Sci 23:501–512

    Google Scholar 

  • Galis F (1996) The application of functional morphology to evolutionary studies. Tree 11:124–129

    CAS  PubMed  Google Scholar 

  • Garcia SM, Kopuchain C, Mindlin GB, Fuxjager MJ, Tubaro PL, Goller F (2017) Evolution of vocal diversity through morphological adaptation without learning of complex neural control. Curr Biol 27:2677–2683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gatesy SM, Dial KP (1996) Locomotor modules and the evolution of avian flight. Evolution 50:331–340

    Article  PubMed  Google Scholar 

  • Gaunt AS (1986) Phonation. In: Seller TJ (ed) Bird respiration, vol 1. CRC Press, Boca-Raton (FL), pp 71–96

    Google Scholar 

  • Gaunt AS, Gaunt SLL (1977) Mechanics of the syrinx in Gallus gallus. II. Electromyographic studies of ad libitum vocalization. J Morphol 152:1–20

    Article  CAS  PubMed  Google Scholar 

  • Gaunt AS, Gaunt SLL (1985) Syringeal structure and avian phonation. In: Johnston RF (ed) Current ornithology, vol 2. Plenum Press, New York, pp 213–245

    Chapter  Google Scholar 

  • Gaunt AS, Stein RC, Gaunt SLL (1973) Pressure and airflow during stress calls of the starling, Sturnus vulgaris. J Exp Zool 183:241–262

    Article  Google Scholar 

  • Gaunt AS, Gaunt SLL, Hector DH (1976) Mechanics of the syrinx in Gallus gallus. I. A comparison of pressure events in chickens to those of Oscines. Condor 78:208–223

    Article  Google Scholar 

  • Gaunt AS, Gaunt SLL, Casey RM (1982) Syringeal mechanics reassessed: evidence from Streptopelia. Auk 99:474–494

    Google Scholar 

  • Gaunt AS, Gaunt SLL, Prange HD, Wasser JS (1987) The effect of tracheal coiling on the vocalization of cranes (Aves: Gruidae). J Comp Physiol A 161:43–58

    Article  Google Scholar 

  • Gehr P, Mwangi DK, Amman A, Maloiy GMO, Taylor CR, Weibel ER (1981) Design of the mammalian respiratory system. V. Scaling morphometric diffusing capacity to body mass: wild and domestic animals. Respir Physiol 44:41–86

    Article  Google Scholar 

  • Geipel I, Kalko EKV, Wallmeyer K, Knörnschild M (2013) Postweaning maternal food provisioning in a bat with a complex hunting strategy. Anim Behav 85:1435–1441

    Article  Google Scholar 

  • George JC, Berger AJ (1966) Avian myology. Academic Press, New York

    Google Scholar 

  • Gerisch D, Schwartz R (1972) Morphologische Befunde an den Bronchi arteriales des Hayshuhnes (Gallus gallus dom.). Dt tierärztl Wschr 79:573–612

    Google Scholar 

  • Gier HT (1952) The air sacs of the loon. Auk 69:40–49

    Article  Google Scholar 

  • Gilbert PW (1939) The avian lung and air-sac system. Auk 56:57–63

    Article  Google Scholar 

  • Gillooly JF, Ophir AG (2010) The energetic basis of acoustic communication. Proc Biol Sci 277:1325–1331

    PubMed  PubMed Central  Google Scholar 

  • Goller F, Larsen ON (1997) A new mechanism of sound generation in songbirds. Proc Natl Acad Sci (USA) 94:14787–14791

    Article  CAS  PubMed  Google Scholar 

  • Govindaraju K, Cowley EA, Eidelman DH, Lloyd DK (1997) Microanalysis of lung airw ay surface fluid by capillary electrophoresis w ith conductivity detection. Anal Chem 69:2793–2797

    Article  CAS  PubMed  Google Scholar 

  • Greenewalt CH (1968) Bird song: acoustics and physiology. Smithosonian Institution Press, Washington DC

    Google Scholar 

  • Grigg GC, Beard LA, Augee ML (2004) The evolution of endothermy and its diversity in mammals and birds. Physiol Biochem Zool 77:982–997

    Article  PubMed  Google Scholar 

  • Groebbels F (1932) De Vögel. Bau, Funktion, Lebenserscheinung, Einpassung, vol 1. Borntraeger

    Google Scholar 

  • Groenewald B, Hetz SK, Chown SL, Terblanche JS (2012) Respiratory dynamics of discontinuous gas exchange in the tracheal system of the desert locust, Schistocerca gregaria. J Exp Biol 215:2301–2307

    Article  CAS  PubMed  Google Scholar 

  • Groom AC, Ellis CG, Wrigley SJ, Potter RF (1995) Capillary network morphology and capillary flow. Int J Microcirc Clin Exp 5:223–230

    Article  Google Scholar 

  • Gunkel C, Marin ML (2005) Current techniques in avian anesthesia. Semi Avian Exotic Pet Med 14:263–276

    Article  Google Scholar 

  • Habib MB (2019) New perspectives on the origins of the unique vocal tract of birds. PLoS Biol 17:e3000184. https://doi.org/10.1371/journal.pbio.3000184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamlet MP, Fischer HI (1967) Air sacs of respiratory origin in some Procellariiform birds. Condor 69:586–595

    Article  Google Scholar 

  • Hansell M (2005) Animal architecture. Oxford University Press, New York (NY)

    Book  Google Scholar 

  • Harris WA (2022) Zero to birth. Princeton University Press, Princeton (NJ)

    Book  Google Scholar 

  • Harrison JF (1997) Ventilatory mechanism and control in grasshopers. Am Zool 37:73–81

    Article  Google Scholar 

  • Harrison JF, Woods HA, Roberts SP (2012) Ecological and environmental physiology of insects. Oxford Univ Press, Oxford

    Book  Google Scholar 

  • Harrison JF, Waters JS, Cease AJ, Brooks JMV, Callier V, Klok CJ, Shaffer K, Socha JJ (2013) How locusts breathe. Physiology 28:18–27

    Article  PubMed  Google Scholar 

  • Hartmann T, Verkman AS (1990) Model of ion transport regulation in chloride-secreting airway epithelial cells: integrated description of electrical, chemical, and fluorescence measurements. Biophys J 58:391–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heard DJ (1997) Avian respiratory anatomy and physiology. Respir Dis 6:172–179

    Google Scholar 

  • Henderson DR, Prange HD (1995) Contributions of spiracle movement and airway resistance to unidirectional flow in grasshoppers, Melanoplus differentialis. FASEB J 9:A642. Corpus ID: 32295181

    Google Scholar 

  • Hersch GL (1966) Bird voices and resonant tuning in helium-air mixtures. PhD Thesis, University of California

    Google Scholar 

  • Hinds DS, Calder WA (1971) Tracheal dead space in the respiration of birds. Evolution 25:429–440

    Article  PubMed  Google Scholar 

  • Hochgraf JS, Waters JS, Socha JJ (2018) Patterns of tracheal compression in the thorax of the ground beetle, Platynus decentis. Yale J Biol Med 91:409–430

    PubMed  PubMed Central  Google Scholar 

  • Hodges RD (1974) The histology of the fowl. Academic Press, London

    Google Scholar 

  • Hoffstetter R, Gasc JP (1969) Vertebrae and ribs of modern reptiles. Biol Reptil 1:201–310

    Google Scholar 

  • Hofman MA (2014) Evolution of the human brain: when bigger is better. Front Neuroanat 8:15. https://doi.org/10.3389/fnana.2014.00015

    Article  PubMed  PubMed Central  Google Scholar 

  • Hogg DA (1982) Ossification of the laryngeal, tracheal and syringeal cartilages in the domestic fowl. J Anat 134:57–71

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holle JP, Meyer M, Scheid P (1977) Oxygen affinity of duck blood determined by in vivo and in vitro techniques. Respir Physiol 29:355–361

    Article  CAS  PubMed  Google Scholar 

  • Holle JP, Heisler N, Scheid P (1978) Blood flow distribution in the bird lung and its controls by respiratory gases. Am J Physiol 234:R146–R154

    CAS  PubMed  Google Scholar 

  • Hollinger H (2017) Air sac rupture in birds. https://wagwalking.com/bird/condition/air-sac-rupture#symptoms. Veterinary aspects. Reviewed by Michele K on 06-03-2021. Retrieved 03-07-2021

  • Homberger DG (1979) Functional morphology of the larynx in the parrot, Psittacus erithacus. Am Zool 19:988. https://doi.org/10.1007/BF00312112

    Article  Google Scholar 

  • Homberger DG (2017a) Functional Functional-morphological diversity and complexity of the larynx as a basis for vocal complexity in birds: analogies to human speech. FASEB J 31:577.8. https://doi.org/10.1096/fasebj.31.1_supplement.577.8

    Article  Google Scholar 

  • Homberger DG (2017b) The avian lingual and laryngeal apparatus within the context of the head and jaw apparatus, with comparisons to the mammalian condition: functional morphology and biomechanics of evaporative cooling, feeding, drinking, and vocalization. In: Maina J (ed) The biology of the avian respiratory system. Springer, Cham, pp 27–97

    Chapter  Google Scholar 

  • Hoppeler H, Weibel ER (2000) Structural and functional limits or oxygen supply to muscle. Acta Physiol 168:445–456

    Article  CAS  Google Scholar 

  • Hsia CC, Schmitz A, Lambertz M, Perry SF, Maina JN (2013) Evolution of air breathing: Oxygen homeostasis and the transitions from water to land and sky. Compr Physiol 3:849–915

    Article  PubMed  PubMed Central  Google Scholar 

  • Huetsch JC, Shimoda LA (2022) Pulmonary circulation. In: Janes SM (ed) Encyclopedia of respiratory medicine, 2nd edn. Academic Press, Oxford, pp 81–89

    Chapter  Google Scholar 

  • Huey RB, Stevenson RD (1979) Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Am Zool 19:357–366

    Article  Google Scholar 

  • Huxley TH (1882) On the respiratory organs of Apteryx. Proc Zool Soc (Lond) 1882:560–569

    Article  Google Scholar 

  • Ibrahim IA, Hussein MM, Hamdy A, Abdel-Maksoud FM (2020) Comparative morphological features of syrinx in male domestic fowl Gallus gallus domesticus and male domestic pigeon Columba livia domestica: a histochemical, ultrastructural, scanning electron microscopic and morphometrical study. Microsc Microanal 26:326–347

    Article  CAS  PubMed  Google Scholar 

  • Jaensch S (2015) Inspirational evolution: the avian lower respiratory tract. https://www.aavac.com.au/files/2015-01.pdf. Accessed 27-06-2021

  • Jain V, Bordes S, Bhardwaj A (2021) Physiology, pulmonary circulatory system. [Updated 2021 May 9]. StatPearls [Internet]. StatPearls Publishing, Treasure Island (FL). https://www.ncbi.nlm.nih.gov/books/NBK525948/. Accessed 28-06-2021

  • James AE, Hutchins G, Bush M, Natarajan TK, Burns B (1976) How birds breathe: correlation of radiographic and anatomical and pathological studies. J Vet Radiol Soc 17:77–86

    Article  Google Scholar 

  • Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, Ho SYW, Faircloth BC, Nabholz B, Howard JT et al (2014) Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346:1320–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenni-Eiermann S (2017) Energy metabolism during endurance flight and the post-flight recovery phase. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 203:431–438

    Article  PubMed  Google Scholar 

  • Jimoh SA, Maina JN (2013) Immuno-localization of type-IV collagen in the blood-gas barrier and the epithelial - epithelial cell connections of the avian lung. Biol Lett 9:20120951. https://doi.org/10.1098/rsbl.2012.0951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JH (1982) Pulmonary blood flow distribution in panting ostriches. J Appl Physiol 53:1411–1417

    Article  CAS  PubMed  Google Scholar 

  • Juillet A (1912) Recherches anatomiques, embryologiques, histologiques et comparatives sur le poumon des oiseaux. Arch Zool Exp Gen IX:207–371

    Google Scholar 

  • Jung B (2001) Surgical repair of air sac rupture in a parrot. Tierärztliche Umschau 56:35–37

    Google Scholar 

  • Jürgens JD, Gros G (2002) Phylogeny of gas exchange systems. Anasthesiol Intensivmed Notfallmed Schmerzther 37:185–198

    Google Scholar 

  • Kabak M, Orhan IO, Haziroglu RM (2007) The gross anatomy of larynx, trachea and syrinx in the long-legged buzzard (Buteo rufinus). Anat Histol Embryol 36:27–32

    Article  CAS  PubMed  Google Scholar 

  • Käfer H, Kovac H, Stabentheiner A (2013) Respiration patterns of resting wasps (Vespula sp.). J Insect Physiol 59:475–486

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamani J, Tijjani A, Yidawi JP, Gana AL, Egwu OK, Gusi AM (2009) Subcutaneous emphysema (windpuff) in a 13 weeks old pullet: case report. Int J Poult Sci 8:1121–1122

    Article  Google Scholar 

  • Kambic RE, Biewener AA, Pierce SE (2017) Experimental determination of three-dimensional cervical joint mobility in the avian neck. Front Zool 14:1–15. https://doi.org/10.1186/s12983-017-0223-z

    Article  Google Scholar 

  • Kandyel RM, El Basyouny HA, El Nahas EE, Madkour F, Haddad S, Massoud D, Morsy K, Madkour N, Abumandour M (2021) A histological and immunohistochemical study on the parabronchial epithelium of the domestic fowl’s (Gallus gallus domesticus) lung with special reference to its scanning and transmission electron microscopic characteristics. Microsc Res Tech 2021:1–12

    Google Scholar 

  • Kardong KV (2009) Vertebrates: comparative anatomy, function, evolution, 5th edn. McGraw Hill, New York

    Google Scholar 

  • Keough KM, Parsons CS, Phang PT, Tweeddale MG (1988) Interactions between plasma proteins and pulmonary surfactant: surface balance studies. Can J Physiol Pharmacol 66:1166–1173

    Article  CAS  PubMed  Google Scholar 

  • Khan YS, Lynch DT (2021) Histology, lung. [Updated 2021 May 10]. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island (FL). https://www.ncbi.nlm.nih.gov/books/NBK534789/. Accessed 03-07-2021

  • King AS (1957) The aerated bones of Gallus domesticus. Acta Anat 31:220–230

    Article  CAS  PubMed  Google Scholar 

  • King AS (1966) Structural and functional aspects of the avian lung and its air sacs. Intern Rev Gen Exp Zool 2:171–267

    Article  Google Scholar 

  • King AS (1975) Aves respiratory system. In: Getty R (ed) Sisson and Grossman’s The anatomy of the domestic animals, vol 2, 5th edn. Saunders, Philadelphia, pp 1011–1075

    Google Scholar 

  • King AS (1979) Systema respiratorium. In: Baumel JJ, King AS, Lucas AM, Breazile JE, Evans HE (eds) Nomina anatomica avium. Academic Press, London, pp 227–265

    Google Scholar 

  • King AS (1989) Functional anatomy of the syrinx. In: King AS, McLelland J (eds) Form and function in birds, vol 4. Academic Press, London, pp 105–192

    Google Scholar 

  • King AS, Atherton JD (1970) The identity of the air sacs of the turkey (Melleagris gallopavo). Acta Anat 77:78–91

    Article  CAS  PubMed  Google Scholar 

  • King AS, Cowie AF (1969) The functional anatomy of the bronchial muscle of the bird. J Anat 105:323–336

    CAS  PubMed  PubMed Central  Google Scholar 

  • King AS, King DZ (1979) Avian morphology: general principles. In: King AS, McLelland J (eds) Form and function in birds, vol I. Academic Press, London, pp 1–38

    Google Scholar 

  • King AS, McLelland J (1984) Birds: their structure and function. Bailliére Tindall, Eastbourne (Sussex - England)

    Google Scholar 

  • King AS, McLelland J (eds) (1989) Form and function in birds, vol 4. Academic Press, London

    Google Scholar 

  • King AS, Molony V (1971) The anatomy of respiration. In: Bell DF, Freeman BM (eds) Physiology and biochemistry of the domestic fowl, vol 1. Academic Press, London, pp 347–384

    Google Scholar 

  • King AS, King DZ, Abdalla MA (1978) The structure of the intrapulmonary vaculature of the domestic fowl. In: Piiper J (ed) Respiratory function in birds, adult and emberyonic. Springer, New York, pp 112–124

    Chapter  Google Scholar 

  • Kingsley EP, Eliason CM, Riede T, Li Z, Hiscock TW, Farnsworth M, Thomson SL, Goller F, Tabin CJ, Clarke JA (2018) Identity and novelty in the avian syrinx. Proc Natl Acad Sci (USA) 115:10209–10217

    Article  CAS  PubMed  Google Scholar 

  • Kirkton SD (2007) Effects of insect body size on tracheal structure and function. In: Roach RC, Wagner PD, Hackett PH (eds) Hypoxia and the circulation. Springer, New York (NY), pp 221–228

    Chapter  Google Scholar 

  • Kitazawa S, Fuchina S, Susaki N (1977) Studies on air sacs in domestic fowls. I. Development of air sacs in embryos. Res Bull Obihiro Univ Series I 10:407–427

    Google Scholar 

  • Kloek GP, Casler CL (1972) The lung and air-sac system of the common gracle. Auk 89:817–825

    Article  Google Scholar 

  • Klowden MJ (2002) Physiological systems in insects. Academic Press, New York

    Google Scholar 

  • Krause R (1922) Mikroskopische Anatomie der Wirbeltiere in Einzeldarstellungen. 11. Vögel und Reptilien. Berlin-Leipzig: De Gruyter and Co

    Google Scholar 

  • Krings M, Nyakatura JA, Fischer MS, Wagner H (2014) The cervical spine of the American barn owl (Tyto furcata pratincola): I. Anatomy of the vertebrae and regionalization in their S-shaped arrangement. PLoS One 9:e91653. https://doi.org/10.1371/journal.pone.0091653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krings M, Nyakatura JA, Boumans MLLM, Fischer MS, Wagner H (2017) Barn owls maximize head rotations by a combination of yawing and rolling in functionally diverse regions of the neck. J Anat 231:12–22

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuethe DO (1988) Fluid mechanical valving of airflow in bird lungs. J Exp Biol 136:1–12

    Article  CAS  PubMed  Google Scholar 

  • Labocha MK, Hayes JP (2019) Endotherm. In: Fath B (ed) Encyclopedia of ecology, 2nd edn. Elsevier BV, Amsterdam, pp 368–374

    Chapter  Google Scholar 

  • Larsen ON, Goller F (2002) Direct observation of syringeal muscle function in songbirds and a parrot. J Exp Biol 205:25–35

    Article  PubMed  Google Scholar 

  • Lasiewski RC, Calder WA (1971) A preliminary allometric analysis of respiratory variables in resting birds. Respir Physiol 11:152–166

    Article  CAS  PubMed  Google Scholar 

  • Lierz M, Korbel R (2012) Anesthesia and analgesia in birds. J Exotic Pet Med 21:44–58

    Article  Google Scholar 

  • Lierz M, Rüdiger K (2012) Anesthesia and analgesia in birds. J Exotic Pet Med 21:44–58

    Article  Google Scholar 

  • Lockner FR, Murrish DE (1975) Interclavicular air sac pressures and vocalization in mallard ducks, Anas platyrhynchos. Comp Biocem Physiol 52A:183–187

    Article  Google Scholar 

  • Lockner FR, Youngren OM (1976) Functional syringeal anatomy of the mallard. I. In situ electro-myograms during ESB elicited calling. Auk 93:324–342

    Article  Google Scholar 

  • Locy WA, Larsell O (1916a) The embryology of the birds lungs. Based on observations of the domestic fowl. Part I. 1. The external aspects of lung development. 2. The development of the bronchial tree. Am J Anat 19:447–504

    Article  Google Scholar 

  • Locy WA, Larsell O (1916b) The embryology of the bird’s lung based on observations of the domestic fowl. Part II. Am J Anat 20:1–44

    Article  Google Scholar 

  • López J (1995) Anatomy and histology of the lung and air sacs of birds. In: Pastor LM (ed) Histology, ultrastructure, and immunohistochemistry of the respiratory organs in non-mammalian vertebrates. Publicaciones de la Universitatd de University of Murcia, Murcia, pp 179–233

    Google Scholar 

  • Lovegrove BG (2012) The evolution of endothermay in Cenozoic mammals: a plesiomorphic-apomorphic continuum. Biol Rev 87:128–162

    Article  PubMed  Google Scholar 

  • Lovegrove BG (2017) A phenology of the evolution of endothermy in birds and mammals. Biol Rev 92:1213–1240

    Article  PubMed  Google Scholar 

  • Lovegrove BG (2019) Fires of life: endothermy in birds and mammals. Yale University Press, New Haven

    Book  Google Scholar 

  • Luis da Cruz A, Pedretti ACE, Fernandes MN (2009) Stereological estimation of the surface area and oxygen diffusing capacity of the respiratory stomach of the air-breathing armored catfish, Pterygoplichthys anisitsi (Teleostei: Loricariidae). J Morphol 270:601–614

    Article  Google Scholar 

  • Macklem P, Bouverot P, Scheid P (1979) Measurement of the distensibility of the parabronchi in duck lungs. Respir Physiol 33:23–35

    Article  Google Scholar 

  • Magnussen H, Willmer H, Scheid P (1976) Gas exchange in the air sacs: contribution to respiratory gas exchange in ducks. Respir Physiol 26:129–146

    Google Scholar 

  • Maina JN (1982a) A scanning electron microscopic study of the air- and blood capillaries of the lung of the domestic fowl (Gallus domesticus). Experientia 35:614–616

    Article  Google Scholar 

  • Maina JN (1982b) Stereological analysis of the paleopulmo and neopulmo respiratory regions of the avian lung (Streptopelia decaocto). IRCS Med Sci 10:328. http://erepository.uonbi.ac.ke:8080/xmlui/handle/123456789/50100

  • Maina JN (1984) Morphometrics of the avian lung. 3. The structural design of the passerine lung. Respir Physiol 55:291–309

    Article  CAS  PubMed  Google Scholar 

  • Maina JN (1985) A scanning and transmission electron microscopic study of the bat lung. J Zool (Lond) 205B:19–27

    Article  Google Scholar 

  • Maina JN (1988) Scanning electron microscopic study of the spatial organization of the air- and blood conducting components of the avian lung (Gallus gallus domesticus). Anat Rec 222:145–153

    Article  CAS  PubMed  Google Scholar 

  • Maina JN (1989a) The morphology of the lung of the black mamba Dendroaspis polylepis (Reptilia: Ophidia: Elapidae): a scanning and transmission electron microscopic study. J Anat 167:31–46

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maina JN (1989b) A scanning and transmission electron microscopic study of the tracheal air-sac system in a grasshopper (Chrotogonus senegalensis, Kraus)- (Orthoptera: Acrididae: Pygomorphinae). Anat Rec 223:393–405

    Article  CAS  PubMed  Google Scholar 

  • Maina JN (1989c) The morphometry of the avian lung. In: King AS, McLelland J (eds) Form and function in birds, vol 4. Academic Press, London, pp 307–368

    Google Scholar 

  • Maina JN (1998) The gas exchangers: structure, function, and evolution of the respiratory processes. Springer, Berlin

    Book  Google Scholar 

  • Maina JN (2000a) Comparative respiratory morphology: themes and principles in the design and construction of the gas exchangers. Anat Rec 261:25–44

    Article  CAS  PubMed  Google Scholar 

  • Maina JN (2000b) What it takes to fly: the novel respiratory structural and functional adaptations in birds and bats. J Exp Biol 203:3045–3064

    Article  CAS  PubMed  Google Scholar 

  • Maina JN (2000c) Is the sheet-flow design a ‘frozen core’ (a Bauplan) of the gas exchangers? Comparative functional morphology of the respiratory microvascular systems: Illustration of the geometry and rationalization of the fractal properties. Comp Biochem Physiol 126A:491–515

    Article  CAS  Google Scholar 

  • Maina JN (2002a) Structure, function and evolution of the gas exchangers: comparative perspectives. J Anat (Lond) 201:281–304

    Article  CAS  Google Scholar 

  • Maina JN (2002b) Fundamental structural aspects in the bioengineering of the gas exchangers: comparative perspectives. Adv Anat Embryol Cell Biol 163:1–112

    Article  Google Scholar 

  • Maina JN (2002c) Functional morphology of the vertebrate respiratory organs. Oxford and IBH Publishing Company, Lebanon

    Google Scholar 

  • Maina JN (2003a) A systematic study of the development of the airway (bronchial) system of the avian lung from days 3 to 26 of embryogenesis: a transmission electron microscopic study on the domestic fowl, Gallus gallus variant domesticus. Tissue Cell 35:375–391

    Article  CAS  PubMed  Google Scholar 

  • Maina JN (2003b) Developmental dynamics of the bronchial (airway)- and air sac systems of the avian respiratory system from days 3 to 26 of life: a scanning electron microscopic study of the domestic fowl, Gallus gallus variant domesticus. Anat Embryol 207:119–134

    Article  CAS  Google Scholar 

  • Maina JN (2005) The lung-air sac system of birds: development, structure and function. Springer, Berlin

    Google Scholar 

  • Maina JN (2006) Development, structure, and function of a novel respiratory organ, the lung-air sac system of birds: to go where no other vertebrate has gone. Biol Rev 81:545–579

    Article  PubMed  Google Scholar 

  • Maina JN (2007a) Minutialization at its extreme best! The underpinnings of the remarkable strengths of the air- and the blood capillaries of the avian lung: a conundrum. Respir Physiol Neurobiol 159:141–145

    Article  CAS  PubMed  Google Scholar 

  • Maina JN (2007b) Spectacularly robust! Tensegrity principle explains the mechanical strengths of the avian lung. Respir Physiol Neurobiol 155:1–10

    Article  CAS  PubMed  Google Scholar 

  • Maina JN (2008) Structure of the air- and blood capillaries of the avian lung and the debate regarding the basis of their astounding strengths. In: Morris S, Vosloo A (eds) Proceedings of the 4th comparative physiology and biochemistry conference in Africa, Maasai Mara Game Reserve, Kenya. Medimond S.r.l, via Maserati, Bologna, pp 304–313

    Google Scholar 

  • Maina JN (2009) The morphology of the lung of a tropical terrestrial slug, Trichotoxon copleyi (Mollusca: Gastropoda: Pulmonata): a scanning and transmission electron microscopic study. J Zool (Lond) 217:355–366

    Article  Google Scholar 

  • Maina JN (2011) Bioengineering aspects in the design of gas exchangers: comparative evolutionary, morphological, functional, and molecular perspectives. Springer, Heidelberg

    Book  Google Scholar 

  • Maina JN (2012) Comparative molecular developmental aspects of the mammalian- and the avian lungs, and the insectan tracheal system by branching morphogenesis: recent advances and future directions. Front Zool 9:16. https://doi.org/10.1186/1742-9994-9-16

  • Maina JN (2015a) Structural and biomechanical properties of the exchange tissue of the avian lung. Anat Rec 298:1673–1688

    Article  Google Scholar 

  • Maina JN (2015b) The design of the avian respiratory system: development, morphology and function. J Ornithol 156:41–63

    Article  Google Scholar 

  • Maina J (2015c) Morphological and morphometric properties of the blood-gas barrier: comparative perspectives. In: Makanya AN (ed) The vertebrate blood-gas barrier in health and disease. Springer, Cham, pp 15–39

    Chapter  Google Scholar 

  • Maina JN (2017a) Pivotal debates and controversies on the structure and function of the avian respiratory system: setting the record straight. Biol Rev 92:1475–1504

    Article  PubMed  Google Scholar 

  • Maina JN (2017b) Functional design of the mature avian respiratory system. In: Maina JN (ed) The biology of the avian respiratory system: evolution, development, structure and function. Springer, Cham, pp 191–218

    Chapter  Google Scholar 

  • Maina JN (2017c) Critical appraisal of some factors pertinent to the functional designs of the gas exchangers. Cell Tissue Res 367:747–767

    Article  CAS  PubMed  Google Scholar 

  • Maina JN (2022) Perspectives on the structure and function of the avian respiratory system: functional efficiency built on structural complexity. Front Anim Sci 3:851574. https://doi.org/10.3389/fanim.2022.851574

    Article  Google Scholar 

  • Maina JN, Africa M (2000) Inspiratory aerodynamic valving in the avian lung: functional morphological study of the extrapulmonary primary bronchus. J Exp Biol 203:2865–2876

    Article  CAS  PubMed  Google Scholar 

  • Maina JN, King AS (1982a) The thickness of the avian blood-gas barrier: qualitative and quantitative observations. J Anat 134:553–562

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maina JN, King AS (1982b) Morphometrics of the avian lung. 2. The wild mallard (Anas platyrhynchos) and greylag goose (Anser anser). Respir Physiol 50:299–313

    Article  CAS  PubMed  Google Scholar 

  • Maina JN, King AS (1984) The structural functional correlation in the design of the bat lung. A morphometric study. J Exp Biol 111:43–63

    Article  CAS  PubMed  Google Scholar 

  • Maina JN, King AS (1987) A morphometric study of the lung of the Humboldt penguin (Spheniscus humboldti). Zentralb Vet Med C Anat Histo Embryol 16:293–297

    CAS  Google Scholar 

  • Maina JN, King AS (1989) The lung of the emu, Dromaius novaehollandiae: A microscopic and morphometric study. J Anat 163:67–74

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maina JN, Nathaniel C (2001) A qualitative and quantitative study of the lung of an ostrich, Struthio camelus. J Exp Biol 204:2313–2330

    Article  CAS  PubMed  Google Scholar 

  • Maina JN, van Gils P (2001) Morphometric characterization of the airway and vascular systems of the lung of the domestic pig, Sus scrofa: comparison of the airway, arterial, and venous systems. Comp Biochem Physiol 130A:781–798

    Article  CAS  Google Scholar 

  • Maina JN, West JB (2005) Thin and strong! The bioengineering dilemma in the structural and functional design of the blood-gas barrier: comparative and evolutionary perspectives. Physiol Rev 85:811–844

    Article  CAS  PubMed  Google Scholar 

  • Maina JN, Woodward JD (2009) Three-dimensional serial section computer reconstruction of the arrangement of the structural componenets of the parabronchus of the ostrich, Struthio camelus. Anat Rec 292:1685–1698

    Article  Google Scholar 

  • Maina JN, Abdalla MA, King AS (1982a) Light microscopic morphometry of the lungs of 19 avian species. Acta Anat 112:264–270

    Article  CAS  PubMed  Google Scholar 

  • Maina JN, King AS, King DZ (1982b) A morphometric analysis of the lung of a species of bat. Respir Physiol 50:1–11

    Article  CAS  PubMed  Google Scholar 

  • Maina JN, Howard CV, Scales L (1983) Length densities and maximum diameter distribution of the air capillaries of the paleopulmo and neopulmo region of the avian lung. Acta Stereol 2:101–107

    Google Scholar 

  • Maina JN, Maloiy GMO, Warui CN, Njogu EK, Kokwaro ED (1989a) A scanning electron microscopic study of the morphology of the reptilian lung: the savanna monitor lizard (Varanus exanthematicus) and the pancake tortoise (Malacochersus tornieri). Anat Rec 224:514–522

    Article  CAS  PubMed  Google Scholar 

  • Maina JN, King AS, Settle G (1989b) An allometric study of the pulmonary morphometric parameters in birds, with mammalian comparison. Philos Trans R Soc (Lond) 326B:1–57

    Google Scholar 

  • Maina JN, Thomas SP, Dallas DM (1991) A morphometric study of bats of different size: correlations between structure and function of the chiropteran lung. Philos Trans R Soc (Lond) B 333:31–50

    Article  CAS  Google Scholar 

  • Maina JN, Veltcamp CJ, Henry J (1999) A study of the spatial organization of the gas-exchange components of a snake lung - the sandboa Eryx colubrinus (Reptilia: Ophidia; Corubridae) by latex casting. J Zool (Lond) 247:81–90

    Article  Google Scholar 

  • Maina JN, Singh P, Moss EA (2009) Inspiratory aerodynamic valving occurs in the ostrich, Struthio camelus lung: a computational fluid dynamics study under resting unsteady state inhalation. Respir Physiol Neurobiol 169:262–270

    Article  CAS  PubMed  Google Scholar 

  • Maina JN, Jimoh SA, Hosie M (2010) Implicit mechanistic role of the collagen, smooth muscle, and elastic tissue components in strengthening the air- and blood capillaries of the avian lung. J Anat 217:597–608

    Article  PubMed  PubMed Central  Google Scholar 

  • Maina JN, McCracken KG, Chua B, York JM, Milsom WK (2017) Morphological and morphometric specializations of the lung of the Andean goose, Chloephaga melanoptera: a lifelong high-altitude resident. PLoS One 12:e0174395. https://doi.org/10.1371/journal.pone.0174395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maina JN, Ramonisi R, Mashiteng R, Mokae L, Woodward JD (2021) 3D Computer reconstruction of the airway and the vascular systems of the lung of the domestic fowl, Gallus gallus variant domesticus. J Appl Math Comput 5:89–104

    Google Scholar 

  • Marek RD, Falkingham PL, Benson R, Gardiner JD, Maddox TW, Bates KT (2021) Evolutionary versatility of the avian neck. Proc Biol Sci 288:20203150. https://doi.org/10.1098/rspb.2020.3150

    Article  PubMed  PubMed Central  Google Scholar 

  • Mason RJ (2006) Epithelial cells: Type II cells. In: Laurent GJ, Shapiro SD (eds) Encyclopedia of respiratory medicine. Academic Press, Oxford, pp 138–142

    Chapter  Google Scholar 

  • Mathey WJ (1965) Avian tracheal rings. Poult Sci 44:1465–1467

    Article  Google Scholar 

  • Mathieu-Costello O, Szewczak JM, Logermann RB, Agey PJ (1992) Geometry of blood-tissue exchange in bat flight muscle compared with bat hindlimb and rat soleus muscle. Am J Physiol 262:R955–R965

    CAS  PubMed  Google Scholar 

  • May RM (1988) How many species are there on earth? Science 241:1441–1449

    Article  CAS  PubMed  Google Scholar 

  • May RM (1992) How many species inhabit the earth? Sci Am 10:18–24

    Google Scholar 

  • McCasland JS (1987) Neuronal control of bird song production. J Neurosci 7:23–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLelland J (1989a) Anatomy of the lungs and air sacs. In: King AS, McLelland J (eds) Form and function in birds, vol IV. Academic Press, London, pp 221–279

    Google Scholar 

  • McLelland J (1989b) Larynx and trachea. In: King AS, McLelland J (eds) Form and function in birds, vol IV. Academic Press, London, pp 69–103

    Google Scholar 

  • Meban C (1980) Thicknesses of the air-blood barriers in vertebrate lungs. J Anat 131:299–307

    CAS  PubMed  PubMed Central  Google Scholar 

  • Menkes H, Traystman R, Terry P (1979) Collateral ventilation. Fed Proc 38:22–26

    CAS  PubMed  Google Scholar 

  • Miller PL (1974) Respiration - aerial gas transport. In: Rockstein M (ed) The physiology of insects, 2nd edn. Academic, New York, pp 346–402

    Google Scholar 

  • Milsom WK, Scott GR, Frappell PB, McCracken KG (2021) Different strategies for convective O2 transport in high altitude birds: a graphical analysis. Comp Biochem Physiol A: Mol Integr Physiol 253:110871. https://doi.org/10.1016/j.cbpa.2020.110871

    Article  CAS  PubMed  Google Scholar 

  • Miskimen M (1951) Sound production in passerine birds. Auk 68:493–504

    Article  Google Scholar 

  • Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen PB, Ware J, Flouri T, Beutel RG et al (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–767

    Article  CAS  PubMed  Google Scholar 

  • Mitchell C (2016) The evolution of brains and cognitive abilities. In: Pontarotti P (ed) Evolutionary biology. Springer, Cham, pp 73–87

    Chapter  Google Scholar 

  • Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B (2011) How many species are there on earth and in the ocean? PLoS Biol 9:e1001127. https://doi.org/10.1371/journal.pbio.1001127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreira MO, Qu YF, Wiens JJ (2021) Large-scale evolution of body temperatures in land vertebrates. Evol Lets 5:484–494

    Article  Google Scholar 

  • Morrell NW (2014) Pulmonary circulation: a reference module in biomedical sciences. Elsevier, New York

    Google Scholar 

  • Morris CR, Nelson FE, Askew GN (2010) The metabolic power requirements of flight and estimations of flight muscle efficiency in the cockatiel (Nymphicus hollandicus). J Exp Biol 213:2788–2796

    Article  PubMed  Google Scholar 

  • Mortola JP (2004) Pulmonary adaptation to sustained changes in metabolic rate. In: Massaro DJ, Massaro GD, Chambon P (eds) Lung development and regeneration. Marcel Dekker, New York, pp 525–571

    Google Scholar 

  • Moura RS, Correia-Pinto J (2017) Molecular aspects of avian lung development. In: Maina JN (ed) The biology of the avian respiratory system: evolution, development, structure and function. Springer, Cham, pp 129–146

    Chapter  Google Scholar 

  • Müller B (1908) The air sacs of the pigeon. Smithson misc Colls 50:365–414

    Google Scholar 

  • Murie J (1867) On the tracheal pouch of the emu (Dromaius novaehollandiae Vieill). Proc zool Soc (Lond) 1867:405–415

    Google Scholar 

  • Nation JL (2002) Insect physiology and biochemistry. CRC Press, Boca Raton (FL)

    Google Scholar 

  • Nation JL (2008) Tracheal system and respiratory gas exchange. In: Capinera JL (ed) Encyclopedia of entomology. Springer, Dordrecht, pp 245–262

    Google Scholar 

  • Nespolo RF, Bacigalupe LD, Figueroa CC, Koteja P, Opazo JC (2011) Using new tools to solve an old problem: the evolution of endothermy in vertebrates. Trends Ecol Evol 26:414–423

    Article  PubMed  Google Scholar 

  • Nickel R, Schummer A, Seiferle E (1977) Anatomy of the domestic birds. Verlag Paul Parey, Berlin

    Google Scholar 

  • Niven JE, Scharlemann PW (2005) Do insect metabolic rates at rest and during flight scale with body mass? Biol Lett 1:346–349

    Article  PubMed  PubMed Central  Google Scholar 

  • Nottebohm F, Stokes TM, Leonard CM (1976) Central control of song in the canary, Serinus canarius. J Comp Neurol 165:457–486

    Article  CAS  PubMed  Google Scholar 

  • Nottebohm F, Kelley DB, Paton JA (1982) Connections of vocal control nuclei in the canary telencephalon. J Comp Neurol 207:344–357

    Article  CAS  PubMed  Google Scholar 

  • Nudds RL, Bryant DM (2000) The energy cost of short flights in birds. J Exp Biol 203:1561–1582

    Article  CAS  PubMed  Google Scholar 

  • Nyakatura JA, Andrada E (2014) On vision in birds: coordination of head-bobbing and gait stabilises vertical head position in quail. Front Zool 11:27. https://doi.org/10.1186/1742-9994-11-27

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Connor PM (2004) Pulmonary pneumaticity in the postcranial skeleton of extant aves: a case study examining Anseriformes. J Morphol 261:141–161

    Article  PubMed  Google Scholar 

  • O’Connor PM (2009) Evolution of archosaurian body plans: skeletal adaptations of an air-sac-based breathing apparatus in birds and other archosaurs. J Exp Zool 311A:629–646

    Article  Google Scholar 

  • O’Connor PM, Claessens LPAM (2005) Basic avian pulmonary design and flow-through ventilation in non-avian theropod dinosaurs. Nature 436:253–256

    Article  PubMed  Google Scholar 

  • Olmeda B, Villén L, Cruz A, Orellana G, Perez-Gil J (2010) Pulmonary surfactant layers accelerate O2 diffusion through the air-water interface. Biochim Biophys Acta Biomemb 1798:1281–1284

    Article  CAS  Google Scholar 

  • Orgeig S, Bernhard W, Biswas SC, Daniels CB, Hall SB, Hertz SK, Lang CJ, Maina JN, Panda AK, Perez-Gil J et al (2007) The anatomy, physics, and physiology of gas exchange surfaces: is there a universal function for pulmonary surfactant in animal respiratory structures? Integr Comp Biol 47:610–627

    Article  PubMed  Google Scholar 

  • Orgeig S, Morrison JL, Danield CB (2016) Evolution, development, and function of the pulmonary surfactant system in normal and perturbed environments. Compr Physiol 6:363–422

    Google Scholar 

  • Orhan İÖ, Kabak M, Oto Ç, Haziroğlu RM (2009) Air sacs (sacci pneumatici) in the long-legged buzzard (Buteo Rufinus). Ankara Üniv Vet FakDerg 56:7–11

    Google Scholar 

  • Osilla EV, Marsidi JL, Sharma S (2022) Physiology, temperature regulation. [Updated 2022 May 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan. https://www.ncbi.nlm.nih.gov/books/NBK507838/

  • Padian K, de Ricqlès AJ (2020) Inferring the physiological regimes of extinct vertebrates: methods, limits and framework. Philos Trans Royal Soc (Lond) B 375:20190147. https://doi.org/10.1098/rstb.2019.0147

    Article  Google Scholar 

  • Pandey AK, Praveen PK, Ganguly S, Para PA, Saro RW, Mahajan T (2015) Avian respiratory anatomy and physiology with its interspecies variations: a review. World J Pharmaceut Life Sci 3:137–148

    Google Scholar 

  • Parry K, Yates MS (1979) Observations on the avian pulmonary and bronchial circulation using labeled microspheres. Respir Physiol 38:131–140

    Article  CAS  PubMed  Google Scholar 

  • Parry LA, Smithwick F, Nordén KK, Saitta ET, Lozano-Fernandez J, Tanner AR, Caron JB, Edgecombe GD, Briggs DGE, Vinther J (2018) Soft-bodied fossils are not simply rotten carcasses - toward a holistic understanding of exceptional fossil preservation. BioEssays 40:1700167. https://doi.org/10.1002/bies.201700167

    Article  Google Scholar 

  • Pass G (2018) Beyond aerodynamics: the critical roles of the circulatory and tracheal systems in maintaining insect wing functionality. Arthropod Struct Dev 47:391–407

    Article  PubMed  Google Scholar 

  • Patt DI, Patt GR (1969) Comparative vertebrate histology. Harper and Row, New York

    Google Scholar 

  • Pattle RE (1978) Lung surfactant and lung lining in birds. In: Piiper J (ed) Respiratory function in birds, adult and embryonic. Springer, Berlin, pp 23–32

    Chapter  Google Scholar 

  • Payne DC, King AS (1960) The lung of G. domesticus secondary bronchi. J Anat 94:292

    Google Scholar 

  • Perry SF (1988) Functional morphology of the lungs of the Nile crocodile Crocodylus niloticus: non-respiratory parameters. J Exp Biol 143:99–117

    Article  Google Scholar 

  • Perry SF (1990) Recent advances and trends in the comparative morphometry of vertebrate gas exchange organs. In: Boutilier RG (ed) Vertebrate gas exchange. Adv Comp Environml Physiol, vol 6. Springer, Berlin, pp 45–71. https://doi.org/10.1007/978-3-642-75380-0_3

    Chapter  Google Scholar 

  • Perry SF (1992) Gas exchange strategies in reptiles and the origin of the avian lung. In: Wood SC, Weber RE, Hargens AR, Millard RW (eds) Physiological adaptations in vertebrates: respiration, circulation, and metabolism. Marcel Dekker Inc., New York, pp 149–167

    Google Scholar 

  • Perry SF (1998) Lungs: comparative anatomy, functional morphology, and evolution. In: Gans C, Gaunt AS (eds) Biology of the reptilia, vol 19: Morphology G visceral organs. Society for the Study of Amphibians and Reptiles, St. Louis (MO), pp 1–92

    Google Scholar 

  • Perry SF (2001) Functional morphology of the reptilian and avian respiratory systems and its implications for theropod dinosaurs. In: Gauthier J, Gall LF (eds) New perspectives on the origin and early evolution of birds: Proceedings of the International Symposium in honor of John H. Ostrom. Peabody Museum of Natural History, Yale University, New Haven (CT), pp 429–441

    Google Scholar 

  • Perry SF, Duncker HR (1978) Lung architecture, volume and static mechanics in five species of lizards. Respir Physiol 34:61–81

    Article  CAS  PubMed  Google Scholar 

  • Perry SF, Sander M (2004) Reconstructing the evolution of the respiratory apparatus in tetrapods. Respir Physiol Neurobiol 144:125–139

    Article  PubMed  Google Scholar 

  • Perry SF, Darian-Smith C, Alston D, Limpus CJ, Maloney JE (1989) Histological structure of the lungs of the loggerhead turtle, Caretta caretta, before and after hatching. Copeia 1989:1000–1010

    Article  Google Scholar 

  • Perry SF, Lambertz M, Schmitz A (2019) Respiratory biology of animals: evolutionary and functional morphology. Oxford University Press, Oxford (UK)

    Book  Google Scholar 

  • Pete AE, Kress D, Dimitrov MA, Lentink D (2015) The role of passive avian head stabilization in flap** flight. J R Soc Interface 12:0508. https://doi.org/10.1098/rsif.2015.0508)

    Article  PubMed  Google Scholar 

  • Petevinos H (2006) A method for resolving subcutaneous emphysema in a griffon vulture chick (Gyps fulvus). J Exotic Pet Med 15:132–137

    Article  Google Scholar 

  • Pfenning AR, Hara E, Whitney O, Rivas MV, Wang R, Roulhac PL, Howard JT, Wirthlin M, Lovell PV, Ganapathy G et al (2014) Convergent transcriptional specializations in the brains of humans and song-learning birds. Science 346:1256846. https://doi.org/10.1126/science.1251385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pickard WF (1974) Transition regime diffusion and the structure of the insect tracheolar system. J Insect Physiol 20:947–956

    Article  CAS  PubMed  Google Scholar 

  • Pietschmann M, Bartels H, Fons R (1982) Capillary supply of heart and skeletal muscle of small bats and non-flying mammals. Respir Physiol 50:267–282

    Article  CAS  PubMed  Google Scholar 

  • Piiper J (1978) Origin of carbon dioxide in caudal air sacs of birds. In: Piiper J (ed) Respiratory function in birds, adult and embryonic. Springer, Berlin, pp 221–248

    Chapter  Google Scholar 

  • Pison U, Max M, Neuendank A, Weissbach S, Pietschmann S (1994) Host defence capacities of pulmonary surfactant: evidence for ‘non-surfactant’ functions of the surfactant system. Eur J Clin Invest 24:586–599

    Article  CAS  PubMed  Google Scholar 

  • Poelmann RE, Gittenberger-de Groot AC, Vicente-Steijn R, Wisse LJ, Bartelings MM, Everts S, Hoppenbrouwers T, Kruithof BP, Jensen B, de Bruin PW et al (2014) Evolution and development of ventricular septation in the amniote heart. PLoS One 9:e106569. https://doi.org/10.1371/journal.pone.0106569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poole DC, Mathieu-Costello O (1992) Capillary and fiber geometry in rat diaphragm perfusion-fixed in situ at different sarcomere lengths. J Appl Physiol 73:151–159

    Article  CAS  PubMed  Google Scholar 

  • Powell FL (1983) Respiration. In: Abs M (ed) Physiology and behaviours of the pigeon. Academic, New York, pp 73–95

    Google Scholar 

  • Powell FL (2000) Respiration. In: Whittow CG (ed) Sturkie’s avian physiology, 5th edn. Academic, San Diego, pp 233–264

    Chapter  Google Scholar 

  • Powell FL (2015) Respiration. In: Scanes CG (ed) Sturkie’s avian physiology, 6th edn. Academic, San Diego, pp 301–336

    Chapter  Google Scholar 

  • Powell FL, Hempleman SC (1985) Sources of carbon dioxide in penguin air sacs. Am J Physiol 248:R748–R752

    CAS  PubMed  Google Scholar 

  • Powell FL, Hopkins SR (2004) Comparative physiology of lung complexity: implications for gas exchange. News Physiol Sci 19:55–60

    PubMed  Google Scholar 

  • Powell FL, Hastings RH, Mazzone RW (1985) Pulmonary vascular resistance during unilateral arterial pulmonary occlusion in ducks. Am J Physiol 249:R39–R43

    CAS  PubMed  Google Scholar 

  • Prange HD, Wasser JS, Gaunt AS, Gaunt SLL (1985) The respiratory responses to acute heat stress in cranes (Gruidae): the effects of tracheal coiling. Respir Physiol 62:95–103

    Article  CAS  PubMed  Google Scholar 

  • Prince B, Riede T, Goller F (2011) Sexual dimorphism and bilateral asymmetry of syrinx and vocal tract in the European starling (Sturnus vulgaris). J Morphol 272:1527–1536

    Article  PubMed  PubMed Central  Google Scholar 

  • Radu C, Radu L (1971) Le dispositif vasculaire du poumon chez les oiseaux domestiques (coq, dindon, oie, canard). Revue Med Vet 122:1219–1226

    Google Scholar 

  • Ragab SA, Reem RT (2016) Macroscopical anatomy of the air sacs of the turkey. Int J Adv Res Biol Sci 3:149–159

    Google Scholar 

  • Raikow RJ, Bledsoe AH (2000) Phylogeny and evolution of the passerine birds: independent methods of phylo-genetic analysis have produced a well-supported hypothesis of passerine phylogeny, one that has proved particularly useful in ecological and evolutionary studies. BioScience 50:487–499

    Article  Google Scholar 

  • Rainey G (1849) On the minute anatomy of the lung of the bird, considered chiefly in relation to the structure with which the air is in contact whilst traversing the ultimate subdivisions of the air passages. Med Chir Trans 82:47–58

    Article  Google Scholar 

  • Rawal UM (1976) Nerves in the avian air sacs. Pavo 14:57–60

    Google Scholar 

  • Rayner JMV (1982) Avian flight energetics. Annu Rev Physiol 44:109–119

    Article  CAS  PubMed  Google Scholar 

  • Redrobe S (2015) Pelecaniformes (Pelicans, Tropicbirds, Cormorants, Frogatebirds, Anhingas, Gannets). In: Miller R, Fowler E, Murray E (eds) Fowler’s zoo and wild animal medicine, vol 8. WB Saunders, St Louis, pp 96–99

    Google Scholar 

  • Reiblein E (2017) Canary in a coal mine. Marine Log 122:9. Gale OneFile: Business. https://link.gale.com/apps/doc/A512184846/GPS?u=webdemo&sid=GPS&xid=086f9b8b

  • Riede T, Goller F (2010) Functional morphology of the soundgenerating labia in the syrinx of two songbird species. J Anat 216:23–36

    Article  PubMed  Google Scholar 

  • Riede T, Fisher JH, Goller F (2010) Sexual dimorphism of the zebra finch syrinx indicates adaptation for high fundamental frequencies in males. PloS One 5:e11368. https://doi.org/10.1371/journal.pone.0011368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riede T, Li Z, Tokuda IT, Farmer CG (2015) Functional morphology of the Alligator mississippiensis larynx with implications for vocal production. J Exp Biol 218:991–998

    Article  PubMed  Google Scholar 

  • Riede T, Thomson SL, Titze IR, Goller F (2019) The evolution of the syrinx: an acoustic theory. PLoS Biol 17:e2006507. https://doi.org/10.1371/journal.pbio.2006507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizzo AN, Fraidenburg DR, Yuan JXJ (2015) Pulmonary vascular anatomy. In: Lanzer P (ed) Panvascular medicine. Springer, Berlin. https://doi.org/10.1007/978-3-642-37078-6_201

    Chapter  Google Scholar 

  • Romanoff AL (1960) The avian embryo. Macmillan, New York

    Google Scholar 

  • Rothe HJ, Biesel W, Nachtigall W (1987) Pigeon flight in a wind tunnel. II. Gas exchange and power requirements. J Comp Physiol B 157:99–109

    Article  Google Scholar 

  • Roux E (2002) Origin and evolution of the respiratory tract in vertebrates. Rev Mal Respir 19:601–615

    CAS  PubMed  Google Scholar 

  • Ruben J (1995) The evolution of endothermy in mammals and birds: From physiology to fossils. Annu Rev Physiol 57:69–95

    Article  CAS  PubMed  Google Scholar 

  • Runciman S, Seymour RS, Baudinette RV, Pearson JT (2005) An allometric study of lung morphology during development in the Australian pelican, Pelicanus conspicillatus, from embryo to adult. J Anat 207:365–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell AP, Rittenhouse DR, Bauer AM (2000) Laryngotracheal morphology of Afro-Madagascan geckos: a comparative survey. J Morphol 245:241–268

    Article  CAS  PubMed  Google Scholar 

  • Sacchi R, Galeotti P, Fasola M, Gerzeli G (2004) Larynx morphology and sound production in three species of Testudinidae. J Morphol 261:175–183

    Article  PubMed  Google Scholar 

  • Sackton TB, Grayson P, Cloutier A, Hu Z, Liu JS, Wheeler NE, Gardner PP, Clarke JA, Baker AJ, Clamp M, Edwards SV (2019) Convergent regulatory evolution and loss of flight in paleognathous birds. Science 364:74–78

    Article  CAS  PubMed  Google Scholar 

  • Sanders K, Farmer CG (2012) The pulmonary anatomy of Alligator mississippiensis and its similarity to the avian respiratory system. Anat Rec 295:699–714

    Article  Google Scholar 

  • Sappey PC (1847) Recherches sur L’appareil Respiratoire des Oiseaux. Bailliere, Paris

    Google Scholar 

  • Schachner ER, Lyson TR, Dodson P (2009) Evolution of the respiratory system in nonavian theropods: evidence from rib and vertebral morphology. Anat Rec 292:1501–1513

    Article  Google Scholar 

  • Schachner ER, Farmer CG, McDonald AT, Dodson P (2011) Evolution of the dinosauriform respiratory apparatus: new evidence from the postcranial axial skeleton. Anat Rec 294:1532–1547

    Article  Google Scholar 

  • Schachner ER, Hutchinson JR, Farmer C (2013) Pulmonary anatomy in the Nile crocodile and the evolution of unidirectional airflow in Archosauria. PeerJ 1:e60. https://doi.org/10.7717/peerj.60

    Article  PubMed  PubMed Central  Google Scholar 

  • Schachner ER, Cieri RL, Butler JP, Farmer C (2014) Unidirectional pulmonary airflow patterns in the savannah monitor lizard. Nature 506:367–370

    Article  CAS  PubMed  Google Scholar 

  • Schachner ER, Hedrick BP, Richbourg HA, Hutchinson JR, Farmer C (2021) Anatomy, ontogeny, and evolution of the archosaurian respiratory system: a case study on Alligator mississippiensis and Struthio camelus. J Anat 238:845–873

    Article  PubMed  Google Scholar 

  • Scheid P (1979) Mechanisms of gas exchange in bird lungs. Rev Physiol Biochem Pharmacol 86:137–186

    Article  CAS  PubMed  Google Scholar 

  • Scheid P, Piiper J (1989) Respiratory mechnics and airflow in birds. In: King AS, McLelland J (eds) Form and function in birds, vol 4. Academic, London, pp 364–391

    Google Scholar 

  • Scheid P, Hook C, Bridges CR (1981) Diffusion in gas exchange of insects. Fed Proc 41:2143–2145

    Google Scholar 

  • Schittny J, Burri PH (2004) Morphogenesis of the mammalian lung: aspects of structure and extracellular matrix. In: Massaro DJ, Massaro GC, Chambon P (eds) Lung development and regeneration. Marcel Dekker, New York, pp 275–316

    Google Scholar 

  • Schmidt MF, Martin WJ (2014) The respiratory-vocal system of songbirds: anatomy, physiology, and neural control. Prog Brain Res 212:297–335

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt-Nielsen K (1971) How birds breathe. Sci Am 225:72–79

    Article  Google Scholar 

  • Schmidt-Nielsen K (1972) Locomotion: energy cost of swimming, flying, and running. Science 177:222–228

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Nielsen K (1983) Animal physiology: adaptation and environment, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Schmidt-Nielsen K (1990) Animal physiology: adaptation and environment, 4th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Schmidt-Nielsen K, Kanwisher J, Lasiewski RC, Cohn JE, Bretz WL (1969) Temperature regulation and respiration in the ostrich. Condor 71:341–352

    Article  Google Scholar 

  • Schmitz A, Perry SF (1999) Stereological determination of tracheal volume and diffusing capacity of the tracheal walls in the stick insect, Carausius morosus (Phasmatodea, Lonchodidae). Physiol Biochem Zool 72:205–218

    Article  CAS  PubMed  Google Scholar 

  • Schulze FE (1908) Die lungen des afrikanisches straußes. S-B Preus Akad Wiss 1:416–431

    Google Scholar 

  • Schulze FE (1910) Über die Bronchi Saccales und den Mechanismus der Atmung bei den Vögeln. S.-B preuss Akad Wiss. Berlin 1910:537–538

    Google Scholar 

  • Seddon N (2005) Ecological adaptation and species recognition drives vocal evolution in neotropical suboscine birds. Evolution 59:200–215

    PubMed  Google Scholar 

  • Seller TJ (ed) (1987) Bird respiration, vol I and II. CRC Press, Boca Raton (FL)

    Google Scholar 

  • Senter P (2008) Voices of the past: a review of paleozoic and mesozoic animal sounds. Historical Biol 20:255–287

    Article  Google Scholar 

  • Seymour RS, Runciman S, Baudinette RV, Pearson JT (2004) Developmental allometry of pulmonary structure and function in the altricial Australian pelican, Pelecanus conspicillatus. J Exp Biol 207:2663–2669

    Article  PubMed  Google Scholar 

  • Sherwood CC (2018) Are we wired differently? Sci Am 2018:52–55

    Google Scholar 

  • Shimoda LA (2006) Pulmonary circulation. In: Laurent GJ, Shapiro SD (eds) Encyclopedia of respiratory medicine. Academic Press, London, pp 537–544

    Chapter  Google Scholar 

  • Shine R (2005) Life-history evolution in reptiles. Annu Rev Ecol Evol Syst 36:23–46

    Article  Google Scholar 

  • Simelane SM, Abelman S, Duncan FD (2016) Gas exchange models for a flexible insect tracheal system. Acta Biotheor 64:161–196

    Article  CAS  PubMed  Google Scholar 

  • Snelling EP, Seymour RS, Runciman S, Matthews PGD, White CR (2011) Symmorphosis and the insect respiratory system: allometric variation. J Exp Biol 214:3225–3237

    Article  PubMed  Google Scholar 

  • Snelling EP, Seymour RS, Runciman S, Matthews PGD, White CR (2012) Symmorphosis and the insect respiratory system: a comparison between flight and hop** muscle. J Exp Biol 215:3324–3333

    PubMed  Google Scholar 

  • Snyder GK, Sheafor B, Scholnick D, Farrelly C (1995) Gas exchange in the insect tracheal system. J Theor Biol 172:199–207

    Article  CAS  PubMed  Google Scholar 

  • Soum JM (1896) Recherches physioloqiques sur l’appareil respiratoire des oiseaux. Ann Univ Lyon 28:1–126

    Google Scholar 

  • Stanislaus M (1937) Untersuchungen an der Kolibrilunge. Z Morph Ökol Tiere 33:261–289

    Article  Google Scholar 

  • Stein RC (1968) Modulation in bird sounds. Auk 85:229–243

    Article  Google Scholar 

  • Stork NE (1994) How many species are there? Biodivers Conserv 3:204. https://doi.org/10.1007/BF02291892

    Article  Google Scholar 

  • Stork NE (2018) How many species of insects and other terrestrial arthropods are there on earth? Annu Rev Entomol 63:31–45

    Article  CAS  PubMed  Google Scholar 

  • Sullivan L, Daniels CB, Phillips I, Orgeig S, Whitsett J (1998) Conservation of surfactant protein A: evidence for a single origin for vertebrate pulmonary surfactant. J Mol Evol 46:131–138

    Article  CAS  PubMed  Google Scholar 

  • Suthers RA (1990) Contributions to birdsong from the left and right sides of the intact syrinx. Nature 347:473–477

    Article  Google Scholar 

  • Suthers RA, Zollinger SA (2004) Producing song: the vocal apparatus. Ann N Y Acad Sci (USA) 1016:109–129

    Article  Google Scholar 

  • Tambussi CP, de Mendoza R, Degrange FJ, Picasso MB (2012) Flexibility along the neck of the neogene terror bird Andalgalornis steulleti (Aves Phorusrhacidae). PLoS One 7:e37701. https://doi.org/10.1371/journal.pone.0037701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor CR, Weibel ER (1981) Design of the mammalian respiratory system. I. Problem and strategy. Respir Physiol 44:1–10

    Article  CAS  PubMed  Google Scholar 

  • Tenney SM, Remmers JE (1963) Comparative quantitative morphology of the mammalian lung: diffusing area. Nature 197:54–56

    Article  CAS  PubMed  Google Scholar 

  • Terblanche JS, Woods HA (2018) Why do models of insect respiratory patterns fail? J Exp Biol 221:jeb130039. https://doi.org/10.1242/jeb.130039

    Article  PubMed  Google Scholar 

  • Terray L, Plateau O, Abourachid A, Böhmer C, Delapré A, de la Bernardie X, Cornette R (2020) Modularity of the neck in birds (Aves). Evol Biol 47:97–110

    Article  Google Scholar 

  • Terry PB, Traystman RJ, Newball HH, Batra G, Menkes HA (1978) Collateral ventilation in man. N Engl J Med 298:10–15

    Article  CAS  PubMed  Google Scholar 

  • Ton R, Boyce AJ, Mitchell AE, Mouton JC, Gobbo NR, Blake W, Tobalske B (2021) Galliformes exhibit reduced cardiorespiratory morphology yet similar skeletal mass compared with other gamebirds. Wilson J Ornithol 133. https://doi.org/10.1676/20-00077

  • Tucker V (1971) Flight energetics in birds. Am Zool 11:115–124

    Article  Google Scholar 

  • Van der Leeuw AHJ, Bout RG, Zweers GA (2001a) Control of the cranio-cervical system during feeding in birds. Am Zool 41:1352–1636

    Google Scholar 

  • Van der Leeuw A, Bout RG, Zweers GA (2001b) Evolutionary morphology of the neck system in ratites, fowl and waterfowl. Netherlands J Zool (LOnd) 51:243–262

    Article  Google Scholar 

  • Varela-Lasheras I, Bakker AJ, van der Mije SD, Metz JAJ, van Alphen J, Gallis F (2011) Breaking evolutionary and pleiotropic constraints in mammals: on sloths, manatees and homeotic mutations. EvoDevo 2:11. https://doi.org/10.1186/2041-9139-2-11

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaughan TA, Bateman GC (1970) Functional morphology of the forelimb of mormoopid bats. J Mammal 51:217–235

    Article  Google Scholar 

  • Vos HJ (1934) Über die Vege der Atemluft in der Entenlunge. Z vergl Physiol 21:552–578

    Article  Google Scholar 

  • Vos HJ (1937) Über das Fehlen der rekurrenten Bronchien beim **uin und bei den Reptilien. Zool Anz 117:176–181

    Google Scholar 

  • Voshaar TH (2008) Kollaterale Ventilation [Collateral ventilation]. Pneumologie 62:355–360

    Article  PubMed  Google Scholar 

  • Vu ET, Mazurek ME, Kuo YC (1994) Identification of a forebrain motor programming network for the learned song of zebra finches. J Neurosci 14:6924–6934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner WW, Weir EK (eds) (1994) The pulmonary circulation and gas exchange. Futura Publishing, Armonk (NY)

    Google Scholar 

  • Walsh C, McLelland J (1974a) The ultrastructure of the avian extrapulmonary respiratory epithelium. Acta Anat 89:412–422

    Article  CAS  PubMed  Google Scholar 

  • Walsh C, McLelland J (1974b) Granular ‘endocrine’ cells in avian respiratory epithelia. Cell Tiss Res 153:269–276

    Article  CAS  Google Scholar 

  • Walsh C, McLelland J (1974c) Intraepithelial axons in the avian trachea. Z Zellforsch mikrosk Anat 147:109–117

    Article  Google Scholar 

  • Walsh C, McLelland J (1978) The development of the epithelium and its enervation in the avian extra-pulmonary respiratory tract. J Anat 125:171–182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang N, Banzett RB, Butler JP, Fredberg JJ (1988) Bird lung models show that convective inertia effects inspiratory aerodynamic valving. Respir Physiol 73:111–124

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Banzett RB, Nations CS, Jenkins EA (1992) An aerodynamic valve in the avian primary bronchus. J Exp Biol 262:441–445

    CAS  Google Scholar 

  • Wang X, O’Conner JK, Maina JN, Pan Y, Wang M, Wang Y, Zheng X, Zhou Z (2018) Archaeorhynchus preserving significant soft tissue including probable fossilized lungs. Proc Natl Acad Sci (USA) 115:11555–11560

    Article  CAS  PubMed  Google Scholar 

  • Warner RW (1971) The structural basis of the organ of voice in the genera Anas and Aythya (Aves). J Zool (Lond) 164:197–207

    Article  Google Scholar 

  • Warner RW (1972) The anatomy of the syrinx in passerine birds. J Zool (Lond) 168:381–393

    Article  Google Scholar 

  • Warner RW (2009) The anatomy of the sytinx in passerine birds. J Zool, Lond 168:381–393

    Article  Google Scholar 

  • Warrick DR, Bundle MW, Dial KP (2002) Bird maneuverin flight: blurred bodies, clear heads. Integr Comp Biol 42:141–148

    Article  CAS  PubMed  Google Scholar 

  • Waters PD, Patel HR, Ruiz-Herrera A, Alvarez-González L, Listera NC, Simakov O, Ezaz T, Kaur P, Frere C, Grutzner F et al (2021) Microchromosomes are building blocks of bird, reptile, and mammal chromosomes. Proc Natl Acad (USA) 118:e2112494118. https://doi.org/10.1073/pnas.2112494118

    Article  CAS  Google Scholar 

  • Watson RR, Fu Z, West JB (2008) Minimal distensibility of pulmonary capillaries in avian lungs compared with mammalian lungs. Respir Physiol Neurobiol 160:208–214

    Article  PubMed  Google Scholar 

  • Webster MR, Socha JJ, Teresi L, Nardinocchi P, De Vita R (2015) Structure of tracheae and the functional implications for collapse in the American cockroach. Bioinspir Biomim 10:066011. https://doi.org/10.1088/1748-3190/10/6/066011

    Article  CAS  PubMed  Google Scholar 

  • Wedel MJ (2009) Evidence for bird-like air sacs in saurischian dinosaurs. J Exp Zool 311A:611–628

    Article  Google Scholar 

  • Weibel ER (1973) Morphological basis of the alveolar-capillary gas exchange. Physiol Rev 53:419–495

    Article  CAS  PubMed  Google Scholar 

  • Weibel ER (1984) The pathways for oxygen. Harvard University Press, Harvard (MA)

    Google Scholar 

  • Weibel ER (2000) Symmorphosis: on form and function in sha** life. Harvard University Press, Cambridge (MA)

    Google Scholar 

  • Weis-Fogh T (1964a) Diffusion in insect flight muscle, the most active tissue known. J Exp Biol 41:229–256

    Article  CAS  PubMed  Google Scholar 

  • Weis-Fogh T (1964b) Functional design of the tracheal system of flying insects as compared with the avian lung. J Exp Biol 41:207–228

    Article  CAS  Google Scholar 

  • Weis-Fogh T (1967) Respiration and tracheal ventilation in locusts and other flying insects. J Exp Biol 47:561–587

    Article  CAS  PubMed  Google Scholar 

  • Welty JC (1979) The life of birds, 2nd edn. Saunders, Philadelphia (PA)

    Google Scholar 

  • Welty JC, Baptista L (1988) The life of birds, 4th edn. Saunders College Publishing, New York (NY)

    Google Scholar 

  • West JB (2000) Respiratory physiology: the essential, 6th edn. Lippincott Williams and Wilkins, Philadelphia (PA)

    Google Scholar 

  • West JB (2009) Comparative physiology of the pulmonary blood-gas barrier: the unique avian solution. Am J Physiol Regul Integr Comp Physiol 297:R1625–R1634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West JB (2015) Stress failure of the pulmonary blood-gas barrier. In: Makanya A (ed) The vertebrate blood-gas barrier in health and disease. Springer, Cham (Switzerland), pp 135–158

    Chapter  Google Scholar 

  • West JB (2017) Structure and function of avian pulmonary capillaries: comparison with mammals. In: Maina JN (ed) The biology of the avian respiratory system: evolution, development, structure and function. Springer, Heidelberg, pp 179–190

    Chapter  Google Scholar 

  • West NH, Bamford OS, Jones DR (1977) A scanning electron microscope study of the microvasculature of the avian lung. Cell Tiss Res 176:553–564

    Article  CAS  Google Scholar 

  • West JB, Watson RR, Fu Z (2006) The honeycomb-like structure of the bird lung allows a uniquely thin blood-gas barrier. Respir Physiol Neurobiol 152:115–118

    Article  PubMed  Google Scholar 

  • West JB, Watson RR, Fu Z (2007a) Support of pulmonary capillaries in avian lung. Respir Physiol Neurobiol 159:146

    Article  PubMed  PubMed Central  Google Scholar 

  • West JB, Watson RR, Fu Z (2007b) Major differences in the pulmonary circulation between birds and mammals. Respir Physiol Neurobiol 157:382–390

    Article  PubMed  Google Scholar 

  • West JB, Fu Z, Deerinck TJ, Mackey MR, Obayashi JT, Ellisman MH (2010) Structure-function studies of blood and air capillaries in chicken lung using 3d electron microscopy. Respir Physiol Neurobiol 170:202. https://doi.org/10.1016/j.resp.2009.12.010

    Article  PubMed  Google Scholar 

  • Westneat MW, Betz O, Blob RW, Fezza K, Cooper WJ, Lee WK (2003) Tracheal respiration in insects visualized with synchrotron X-ray imaging. Science 299:558–560

    Article  CAS  PubMed  Google Scholar 

  • Wetherbee DK (1951) Air sacs in the English sparrow. Auk 68:242–244

    Article  Google Scholar 

  • Wetmore A (1918) A note on the tracheal air sac in the ruddy duck. Condor 20:19–20

    Article  Google Scholar 

  • White SS (1975) The larynx. In: Getty R (ed) Sisson and Grossman’s The anatomy of the domestic animals, vol 2. WB Saunders, Philadelphia, pp 1883–1918

    Google Scholar 

  • White SS, Chubb (1967) The muscles and movements of the larynx of Gallus domesticus. J Anat 102:575

    Google Scholar 

  • Whitney O, Pfenning AR, Howard JT, Blatti CA, Liu F, Ward JM, Wang R, Audet J, Kellis M, Mukherjee S et al (2014) Core and region-enriched networks of behaviorally regulated genes and the singing genome. Science 346:1256780. https://doi.org/10.1126/science.1256780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wigglesworth VB (1972) The principles of insect physiology, 7th edn. Chapman and Hall, London

    Book  Google Scholar 

  • Wigglesworth VB (2008) The respiration of insects. Biol Rev 6:181–220

    Article  Google Scholar 

  • Wittenberg JB, Wittenberg BA (2007) Myoglobin-enhanced oxygen delivery to isolated cardiac mitochondria. J Exp Biol 210:2082–2090

    Article  CAS  PubMed  Google Scholar 

  • Wood PG, Lopatko OV, Orgeig S, Joss JM, Smits AW, Daniels CB (2000) Control of pulmonary surfactant secretion: an evolutionary perspective. Am J Physiol Regul Integr Comp Physiol 278:R611–R619

    Article  CAS  PubMed  Google Scholar 

  • Woodward JD, Maina JN (2005) A 3D digital reconstruction of the components of the gas exchange tissue of the lung of the muscovy duck, Cairina moschata. J Anat 206:477–492

    Article  PubMed  PubMed Central  Google Scholar 

  • Woodward JD, Maina JN (2008) Study of the structure of the air and blood capillaries of the gas exchange tissue of the avian lung by serial section three-dimensional reconstruction. J Microsc 230:84–93

    Article  CAS  PubMed  Google Scholar 

  • Woodward JD, Ramonisi Y, Mashiteng R, Mokae L, Maina JN (2019) Three-dimensional computer reconstruction of the airway- and the vascular systems of the lung of the domestic fowl, Gallus gallus variant domesticus. In: Proceedings of 10th Intern Conf Comput Meth, Vol. 6 (9th–13th July 2019), Singapore. Scientech Publisher LLC (USA), pp 36–48. ISSN 2374-3948

    Google Scholar 

  • Xu X, Zhou Z, Dudley R, Mackem S, Chuong CM, Erickson GM, Varricchio DJ (2014) An integrative approach to understanding bird origins. Science 346:1253293. https://doi.org/10.1126/science.1253293

    Article  CAS  PubMed  Google Scholar 

  • Yarrell W (1833) On the organs of voice in birds. Trans Linn Soc (Lond) 16:305–321

    Article  Google Scholar 

  • Yildiz H, Bahadir A, Akkoç A (2003) A study on the morphological structure of syrinx in ostriches (Struthio camelus). Anat Histol Embryol 32:187–191

    Article  CAS  PubMed  Google Scholar 

  • Young MW, Dickinson E, Flaim ND, Granatosky MC (2022) Overcoming a ‘forbidden phenotype’: The parrot’s head supports, propels and powers tripedal locomotion. Proc Royal Soc (Lond) B 289:20220245. https://doi.org/10.1098/rspb.2022.0245

    Article  Google Scholar 

  • Youngren OM, Peek FW, Phillips RE (1974) Repetitive vocalization evoked by local electrical stimulation of avian brains. III. Evoked activity in the tracheal muscles of the chicken (Gallus gallus). Brain Behav Evol 9:393–421

    Article  Google Scholar 

  • Zeek PM (1951) Double trachea in penguins and sea lion. Anat Rec 111:327–343

    Article  CAS  PubMed  Google Scholar 

  • Zweers GA, van Pelt HC, Beckers A (1981) Morphology and mechanics of the larynx of the pigeon (Columba livia L.): a drill-chuck system (Aves). Zoomorphology 99:37–69

    Article  Google Scholar 

  • Zweers GA, Vanden BJC, Koppendraier R (1986) Avian cranio-cervical systems. Part I: anatomy of the cervical column in the chicken (Gallus gallus L.). Acta Morphol Neerl Scand 25:131–155

    Google Scholar 

  • Zweers G, Bout R, Heidweiller J (1994) Motor organization of the avian head-neck system. In: Davies MNO, Green PR (eds) Perception and motor control in birds. Springer, Berlin, pp 201–221

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maina, J.N. (2023). Structure of the Avian Respiratory System. In: Current Perspectives on the Functional Design of the Avian Respiratory System. Zoological Monographs, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-031-35180-8_3

Download citation

Publish with us

Policies and ethics

Navigation