Synaptic PET Imaging in Neurodegeneration

  • Chapter
  • First Online:
Molecular Imaging of Neurodegenerative Disorders

Abstract

Synaptic vesicle glycoprotein 2A (SV2A) is an integral glycoprotein in synaptic vesicle membranes and has been investigated as a potential positron emission tomography (PET) biomarker of synaptic density. Regional brain SV2A levels correlate with synaptophysin, a commonly used marker of synapse density, providing the basis for the broad utility of SV2A-PET imaging in neurological diseases. In this chapter, we focus on the human SV2A-PET imaging results for multiple neurodegenerative diseases. Research in Alzheimer’s disease (AD) and Parkinson’s disease has progressed most rapidly across multiple centers, with largely consistent results for SV2A/synaptic loss patterns. In AD, synaptic loss patterns differ from amyloid, tau, and FDG, although inter-tracer and interregional correlations have been observed. Other diseases including dementia with Lewy bodies, frontotemporal dementia, Huntington’s disease, progressive supranuclear palsy, and corticobasal degeneration have also been reported. In summary, initial PET studies across indications suggest that the regional pattern of SV2A loss may be specific to disease-associated brain regions and is consistent with loss of synaptic density. Future studies in larger patient cohorts are needed to determine the clinical value of SV2A-PET.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mendoza-Torreblanca JG, Vanoye-Carlo A, Phillips-Farfan BV, Carmona-Aparicio L, Gomez-Lira G. Synaptic vesicle protein 2A: basic facts and role in synaptic function. Eur J Neurosci. 2013;38(11):3529–39.

    Article  PubMed  Google Scholar 

  2. Bartholome O, Van den Ackerveken P, Sanchez Gil J, de la Brassinne BO, Leprince P, Franzen R, et al. Puzzling out synaptic vesicle 2 family members functions. Front Mol Neurosci. 2017;10:148.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mutch SA, Kensel-Hammes P, Gadd JC, Fujimoto BS, Allen RW, Schiro PG, et al. Protein quantification at the single vesicle level reveals that a subset of synaptic vesicle proteins are trafficked with high precision. J Neurosci. 2011;31(4):1461–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lynch BA, Lambeng N, Nocka K, Kensel-Hammes P, Bajjalieh SM, Matagne A, et al. The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proc Natl Acad Sci U S A. 2004;101(26):9861–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cai H, Mangner TJ, Muzik O, Wang M-W, Chugani DC, Chugani HT. Radiosynthesis of 11C-levetiracetam: a potential marker for PET imaging of SV2A expression. ACS Med Chem Lett. 2014;5(10):1152–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mercier J, Archen L, Bollu V, Carré S, Evrard Y, Jnoff E, et al. Discovery of heterocyclic nonacetamide synaptic vesicle protein 2A (SV2A) ligands with single-digit nanomolar potency: opening avenues towards the first SV2A positron emission tomography (PET) ligands. ChemMedChem. 2014;9(4):693–8.

    Article  CAS  PubMed  Google Scholar 

  7. Estrada S, Lubberink M, Thibblin A, Sprycha M, Buchanan T, Mestdagh N, et al. [11C]UCB-A, a novel PET tracer for synaptic vesicle protein 2 A. Nucl Med Biol. 2016;43(6):325–32.

    Article  CAS  PubMed  Google Scholar 

  8. Warnock GI, Aerts J, Bahri MA, Bretin F, Lemaire C, Giacomelli F, et al. Evaluation of 18F-UCB-H as a novel PET tracer for synaptic vesicle protein 2A in the brain. J Nucl Med. 2014;55(8):1336–41.

    Article  CAS  PubMed  Google Scholar 

  9. Nabulsi NB, Mercier J, Holden D, Carre S, Najafzadeh S, Vandergeten MC, et al. Synthesis and preclinical evaluation of 11C-UCB-J as a PET tracer for imaging the synaptic vesicle glycoprotein 2A in the brain. J Nucl Med. 2016;57(5):777–84.

    Article  CAS  PubMed  Google Scholar 

  10. Li S, Cai Z, Zhang W, Holden D, Lin SF, Finnema SJ, et al. Synthesis and in vivo evaluation of [18F]UCB-J for PET imaging of synaptic vesicle glycoprotein 2A (SV2A). Eur J Nucl Med Mol Imaging. 2019;46(9):1952–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li S, Cai Z, Wu X, Holden D, Pracitto R, Kapinos M, et al. Synthesis and in vivo evaluation of a novel PET radiotracer for imaging of synaptic vesicle glycoprotein 2A (SV2A) in nonhuman primates. ACS Chem Neurosci. 2019;10(3):1544–54.

    Article  CAS  PubMed  Google Scholar 

  12. Constantinescu CC, Tresse C, Zheng M, Gouasmat A, Carroll VM, Mistico L, et al. Development and in vivo preclinical imaging of Fluorine-18-labeled synaptic vesicle protein 2A (SV2A) PET tracers. Mol Imaging Biol. 2019;21(3):509–18.

    Article  CAS  PubMed  Google Scholar 

  13. Cai Z, Li S, Zhang W, Pracitto R, Wu X, Baum E, et al. Synthesis and preclinical evaluation of an (18)F-labeled synaptic vesicle glycoprotein 2A PET imaging probe: [(18)F]SynVesT-2. ACS Chem Neurosci. 2020;11:592.

    Article  CAS  PubMed  Google Scholar 

  14. Li S, Naganawa M, Pracitto R, Najafzadeh S, Holden D, Henry S, et al. Assessment of test-retest reproducibility of [(18)F]SynVesT-1, a novel radiotracer for PET imaging of synaptic vesicle glycoprotein 2A. Eur J Nucl Med Mol Imaging. 2021;48(5):1327–38.

    Article  CAS  PubMed  Google Scholar 

  15. Naganawa M, Li S, Nabulsi N, Henry S, Zheng MQ, Pracitto R, et al. First-in-human evaluation of (18)F-SynVesT-1, a radioligand for PET imaging of synaptic vesicle glycoprotein 2A. J Nucl Med. 2021;62(4):561–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Finnema SJ, Nabulsi NB, Eid T, Detyniecki K, Lin SF, Chen MK, et al. Imaging synaptic density in the living human brain. Sci Transl Med. 2016;8(348):348ra96.

    Article  PubMed  Google Scholar 

  17. Finnema SJ, Nabulsi NB, Mercier J, Lin SF, Chen MK, Matuskey D, et al. Kinetic evaluation and test-retest reproducibility of [(11)C]UCB-J, a novel radioligand for positron emission tomography imaging of synaptic vesicle glycoprotein 2A in humans. J Cereb Blood Flow Metab. 2018;38(11):2041–52.

    Article  CAS  PubMed  Google Scholar 

  18. Bahri MA, Plenevaux A, Aerts J, Bastin C, Becker G, Mercier J, et al. Measuring brain synaptic vesicle protein 2A with positron emission tomography and [(18)F]UCB-H. Alzheimers Dement (N Y). 2017;3(4):481–6.

    Article  PubMed  Google Scholar 

  19. Brown RK, Bohnen NI, Wong KK, Minoshima S, Frey KA. Brain PET in suspected dementia: patterns of altered FDG metabolism. Radiographics. 2014;34(3):684–701.

    Article  PubMed  Google Scholar 

  20. Alzheimer's Association. 2021 Alzheimer's disease facts and figures. Alzheimers Dement. 2021;17(3):327–406.

    Article  Google Scholar 

  21. Overk CR, Masliah E. Pathogenesis of synaptic degeneration in Alzheimer's disease and Lewy body disease. Biochem Pharmacol. 2014;88(4):508–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Selkoe DJ. Alzheimer's disease is a synaptic failure. Science. 2002;298(5594):789–91.

    Article  CAS  PubMed  Google Scholar 

  23. Robinson JL, Molina-Porcel L, Corrada MM, Raible K, Lee EB, Lee VM, et al. Perforant path synaptic loss correlates with cognitive impairment and Alzheimer’s disease in the oldest-old. Brain. 2014;137(Pt 9):2578–87.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14(4):535–62.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ishibashi K, Onishi A, Fujiwara Y, Ishiwata K, Ishii K. Relationship between Alzheimer disease-like pattern of 18F-FDG and fasting plasma glucose levels in cognitively normal volunteers. J Nucl Med. 2015;56(2):229–33.

    Article  PubMed  Google Scholar 

  26. Smart K, Liu H, Matuskey D, Chen MK, Torres K, Nabulsi N, et al. Binding of the synaptic vesicle radiotracer [(11)C]UCB-J is unchanged during functional brain activation using a visual stimulation task. J Cereb Blood Flow Metab. 2021;41(5):1067–79.

    Article  CAS  PubMed  Google Scholar 

  27. Chen MK, Mecca AP, Naganawa M, Finnema SJ, Toyonaga T, Lin SF, et al. Assessing synaptic density in Alzheimer disease with synaptic vesicle glycoprotein 2A positron emission tomographic imaging. JAMA Neurol. 2018;75(10):1215–24.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bastin C, Bahri MA, Meyer F, Manard M, Delhaye E, Plenevaux A, et al. In vivo imaging of synaptic loss in Alzheimer’s disease with [18F]UCB-H positron emission tomography. Eur J Nucl Med Mol Imaging. 2020;47(2):390–402.

    Article  CAS  PubMed  Google Scholar 

  29. Mecca AP, Chen MK, O’Dell RS, Naganawa M, Toyonaga T, Godek TA, et al. In vivo measurement of widespread synaptic loss in Alzheimer’s disease with SV2A PET. Alzheimers Dement. 2020;16(7):974–82.

    Article  PubMed  PubMed Central  Google Scholar 

  30. de Wilde MC, Overk CR, Sijben JW, Masliah E. Meta-analysis of synaptic pathology in Alzheimer’s disease reveals selective molecular vesicular machinery vulnerability. Alzheimers Dement. 2016;12(6):633–44.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mecca AP, O’Dell RS, Sharp ES, Banks ER, Bartlett HH, Zhao W, et al. Synaptic density and cognitive performance in Alzheimer’s disease: a PET imaging study with [(11) C]UCB-J. Alzheimers Dement. 2022;18:2527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. O’Dell RS, Mecca AP, Chen MK, Naganawa M, Toyonaga T, Lu Y, et al. Association of Aβ deposition and regional synaptic density in early Alzheimer’s disease: a PET imaging study with [(11)C]UCB-J. Alzheimers Res Ther. 2021;13(1):11.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Vanhaute H, Ceccarini J, Michiels L, Koole M, Sunaert S, Lemmens R, et al. In vivo synaptic density loss is related to tau deposition in amnestic mild cognitive impairment. Neurology. 2020;95:e545.

    Article  CAS  PubMed  Google Scholar 

  34. Coomans EM, Schoonhoven DN, Tuncel H, Verfaillie SCJ, Wolters EE, Boellaard R, et al. In vivo tau pathology is associated with synaptic loss and altered synaptic function. Alzheimers Res Ther. 2021;13(1):35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mecca AP, Chen M-K, O’Dell RS, Naganawa M, Toyonaga T, Godek TA, et al. Association of entorhinal cortical tau deposition and hippocampal synaptic density in older individuals with normal cognition and early Alzheimer’s disease. Neurobiol Aging. 2021;111:44.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chen MK, Mecca AP, Naganawa M, Gallezot JD, Toyonaga T, Mondal J, et al. Comparison of [(11)C]UCB-J and [(18)F]FDG PET in Alzheimer’s disease: a tracer kinetic modeling study. J Cereb Blood Flow Metab. 2021;41:271678X211004312.

    Article  Google Scholar 

  37. McKhann GM, Albert MS, Grossman M, Miller B, Dickson D, Trojanowski JQ. Clinical and pathological diagnosis of frontotemporal dementia: report of the work group on frontotemporal dementia and Pick’s disease. Arch Neurol. 2001;58(11):1803–9.

    Article  CAS  PubMed  Google Scholar 

  38. Marttinen M, Kurkinen KM, Soininen H, Haapasalo A, Hiltunen M. Synaptic dysfunction and septin protein family members in neurodegenerative diseases. Mol Neurodegener. 2015;10:16.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Malpetti M, Holland N, Jones PS, Ye R, Cope TE, Fryer TD, et al. Synaptic density in carriers of C9orf72 mutations: a [(11) C]UCB-J PET study. Ann Clin Transl Neurol. 2021;8(7):1515–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Salmon E, Bahri MA, Plenevaux A, Becker G, Seret A, Delhaye E, et al. In vivo exploration of synaptic projections in frontotemporal dementia. Sci Rep. 2021;11(1):16092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Goetz CG. The history of Parkinson’s disease: early clinical descriptions and neurological therapies. Cold Spring Harb Perspect Med. 2011;1(1):a008862.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Picconi B, Piccoli G, Calabresi P. Synaptic dysfunction in Parkinson’s disease. Adv Exp Med Biol. 2012;970:553–72.

    Article  CAS  PubMed  Google Scholar 

  43. Jellinger KA. Neuropathology of sporadic Parkinson’s disease: evaluation and changes of concepts. Mov Disord. 2012;27(1):8–30.

    Article  CAS  PubMed  Google Scholar 

  44. Villalba RM, Smith Y. Differential striatal spine pathology in Parkinson’s disease and cocaine addiction: a key role of dopamine? Neuroscience. 2013;251:2–20.

    Article  CAS  PubMed  Google Scholar 

  45. Matuskey D, Tinaz S, Wilcox KC, Naganawa M, Toyonaga T, Dias M, et al. Synaptic changes in Parkinson disease assessed with in vivo imaging. Ann Neurol. 2020;87(3):329–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wilson H, Pagano G, de Natale ER, Mansur A, Caminiti SP, Polychronis S, et al. Mitochondrial complex 1, sigma 1, and synaptic vesicle 2A in early drug-naive Parkinson’s disease. Mov Disord. 2020;35(8):1416–27.

    Article  CAS  PubMed  Google Scholar 

  47. Delva A, Van Weehaeghe D, Koole M, Van Laere K, Vandenberghe W. Loss of presynaptic terminal integrity in the substantia Nigra in early Parkinson’s disease. Mov Disord. 2020;35(11):1977–86.

    Article  CAS  PubMed  Google Scholar 

  48. Aarsland D, Kurz MW. The epidemiology of dementia associated with Parkinson’s disease. Brain Pathol. 2010;20(3):633–9.

    Article  PubMed  PubMed Central  Google Scholar 

  49. McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor JP, Weintraub D, et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB consortium. Neurology. 2017;89(1):88–100.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Nicastro N, Holland N, Savulich G, Carter SF, Mak E, Hong YT, et al. (11)C-UCB-J synaptic PET and multimodal imaging in dementia with Lewy bodies. Eur J Hybrid Imaging. 2020;4(1):25.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Andersen KB, Hansen AK, Damholdt MF, Horsager J, Skjaerbaek C, Gottrup H, et al. Reduced synaptic density in patients with lewy body dementia: an [(11) C]UCB-J PET imaging study. Mov Disord. 2021;36(9):2057–65.

    Article  CAS  PubMed  Google Scholar 

  52. Burrell JR, Hodges JR, Rowe JB. Cognition in corticobasal syndrome and progressive supranuclear palsy: a review. Mov Disord. 2014;29(5):684–93.

    Article  PubMed  Google Scholar 

  53. Sanders DW, Kaufman SK, DeVos SL, Sharma AM, Mirbaha H, Li A, et al. Distinct tau prion strains propagate in cells and mice and define different tauopathies. Neuron. 2014;82(6):1271–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bigio EH, Vono MB, Satumtira S, Adamson J, Sontag E, Hynan LS, et al. Cortical synapse loss in progressive supranuclear palsy. J Neuropathol Exp Neurol. 2001;60(5):403–10.

    Article  CAS  PubMed  Google Scholar 

  55. Holland N, Jones PS, Savulich G, Wiggins JK, Hong YT, Fryer TD, et al. Synaptic loss in primary tauopathies revealed by [(11) C]UCB-J positron emission tomography. Mov Disord. 2020;35(10):1834–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nithianantharajah J, Hannan AJ. Dysregulation of synaptic proteins, dendritic spine abnormalities and pathological plasticity of synapses as experience-dependent mediators of cognitive and psychiatric symptoms in Huntington’s disease. Neuroscience. 2013;251:66–74.

    Article  CAS  PubMed  Google Scholar 

  57. Fourie C, Kim E, Waldvogel H, Wong JM, McGregor A, Faull RL, et al. Differential changes in postsynaptic density proteins in postmortem Huntington’s disease and Parkinson’s disease human brains. J Neurodegener Dis. 2014;2014:938530, 1.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Bertoglio D, Verhaeghe J, Wyffels L, Miranda A, Stroobants S, Mrzljak L, et al. Synaptic vesicle glycoprotein 2A is affected in the CNS of Huntington’s disease mice and post-mortem human HD brain. J Nucl Med. 2021;

    Google Scholar 

  59. Delva A, Michiels L, Koole M, Van Laere K, Vandenberghe W. Synaptic damage and its clinical correlates in people with early Huntington disease: a PET study. Neurology. 2021;98:e83.

    Article  PubMed  Google Scholar 

  60. Rossi R, Arjmand S, Bærentzen SL, Gjedde A, Landau AM. Synaptic vesicle glycoprotein 2A: features and functions. Front Neurosci. 2022;16:864514.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Bajjalieh SM, Frantz GD, Weimann JM, McConnell SK, Scheller RH. Differential expression of synaptic vesicle protein 2 (SV2) isoforms. J Neurosci. 1994;14(9):5223–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Kai Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, MK., Matuskey, D., Finnema, S.J., Carson, R.E. (2023). Synaptic PET Imaging in Neurodegeneration. In: Cross, D.J., Mosci, K., Minoshima, S. (eds) Molecular Imaging of Neurodegenerative Disorders. Springer, Cham. https://doi.org/10.1007/978-3-031-35098-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35098-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35097-9

  • Online ISBN: 978-3-031-35098-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation