GPU Cloud Architectures for Bioinformatic Applications

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2023)

Abstract

The world of computing is constantly evolving. The trends that are sha** today’s applications are Cloud computing and GPU computing. These technologies allow bringing high performance computations to low power devices, when using a computing outsourcing architecture. Following the trend, bioinformatic applications are looking to take advantage of these paradigms, but there are challenges that have to be solved. Data that these applications work with is usually sensible and has to be protected. Also, GPU usage in Cloud architectures currently presents inefficiencies. This paper makes a review of the characteristics of Cloud computing outsourcing architectures, including the security aspects, and GPU usage for these applications. The proposed architecture includes GPU devices and tries to make efficient use of them. The experiments show that it has the opportunity to increase parallelism and reduce context switching costs when running different applications concurrently on the GPU.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 74.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 96.29
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Galaxy is an open-source web-based framework for performing computational analyses in fields such as bioinformatics, genomics, proteomics, and others. It has an easy-to-use interface for running complex workflows and supports a variety of tools for genome assembly, annotation, and visualization, among other things.

References

  1. NVIDIA TITAN RTX is Here – nvidia.com. https://www.nvidia.com/en-us/deep-learning-ai/products/titan-rtx.html/. Accessed 24 Apr 2023

  2. Anati, I., Gueron, S., Johnson, S., Scarlata, V.: Innovative technology for CPU based attestation and sealing. In: Proceedings of the 2nd International Workshop on Hardware and Architectural Support for Security and Privacy, vol. 13. ACM, New York (2013)

    Google Scholar 

  3. Atta-ur-Rahman, Dash, S., Ahmad, M., Iqbal, T.: Mobile cloud computing: a green perspective. In: Udgata, S.K., Sethi, S., Srirama, S.N. (eds.) Intelligent Systems, pp. 523–533. Springer, Cham (2021). https://doi.org/10.1007/978-981-33-6081-5_46

    Chapter  Google Scholar 

  4. Blass, E.O., Kerschbaum, F., Mayberry, T.: Iterative oblivious pseudo-random functions and applications. In: Proceedings of the 2022 ACM on Asia Conference on Computer and Communications Security, pp. 28–41 (2022). https://doi.org/10.1145/3488932.3517403

  5. Chen, F., et al.: Presage: privacy-preserving genetic testing via software guard extension. BMC Med. Genomics 10(2), 77–85 (2017)

    Google Scholar 

  6. Dematté, L., Prandi, D.: GPU computing for systems biology. Brief. Bioinform. 323–333 (2010). https://doi.org/10.1093/bib/bbq006

  7. Du, G., Jia, L., Wei, L.: A new algorithm of handwritten numeral recognition based on GPU multi-stream concurrent and parallel model. In: 2020 IEEE 2nd International Conference on Civil Aviation Safety and Information Technology (ICCASIT), pp. 232–236 (2020). https://doi.org/10.1109/ICCASIT50869.2020.9368829

  8. Elouali, A., Mora Mora, H., Mora-Gimeno, F.J.: Data transmission reduction formalization for cloud offloading-based IoT systems. J. Cloud Comput. 12(1), 48 (2023). https://doi.org/10.1186/s13677-023-00424-8

  9. Gudukbay, G., et al.: GYAN: accelerating bioinformatics tools in galaxy with GPU-aware computation map**. In: 2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 194–203 (2021)

    Google Scholar 

  10. Hung, C.L., Tang, C.Y.: Bioinformatics tools with deep learning based on GPU. In: 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1906–1908 (2017). https://doi.org/10.1109/BIBM.2017.8217950

  11. Jie, Y., et al.: Multi-party secure computation with intel SGX for graph neural networks. In: ICC 2022 - IEEE International Conference on Communications, pp. 528–533 (2022). https://doi.org/10.1109/ICC45855.2022.9839282

  12. Kumar, I., Singh, S.P.: Machine learning in bioinformatics. In: Singh, D.B., Pathak, R.K. (eds.) Bioinformatics, pp. 443–456. Academic Press (2022). https://doi.org/10.1016/B978-0-323-89775-4.00020-1

  13. Li, B., Patel, T., Samsi, S., Gadepally, V., Tiwari, D.: MISO: exploiting multi-instance GPU capability on multi-tenant systems for machine learning. In: Proceedings of the 13th Symposium on Cloud Computing, pp. 173–189 (2022). https://doi.org/10.1145/3542929.3563510

  14. Li, P., et al.: Multi-key privacy-preserving deep learning in cloud computing. Future Gener. Comput. Syst. 76–85 (2017). https://doi.org/10.1016/j.future.2017.02.006

  15. Li, Y., Huang, C., Ding, L., Li, Z., Pan, Y., Gao, X.: Deep learning in bioinformatics: introduction, application, and perspective in the big data era. Methods 4–21 (2019). https://doi.org/10.1016/j.ymeth.2019.04.008

  16. Liang, J., Qin, Z., **ao, S., Ou, L., Lin, X.: Efficient and secure decision tree classification for cloud-assisted online diagnosis services. IEEE Trans. Dependable Secure Comput. 18(4), 1632–1644 (2021). https://doi.org/10.1109/TDSC.2019.2922958

    Article  Google Scholar 

  17. Maciá-Lillo, A., Ribes, V.S., Mora, H., Jimeno-Morenilla, A.: Efficient GPU cloud architectures for outsourcing high-performance processing to the cloud (2022). https://www.researchsquare.com/article/rs-2120350

  18. Mora, H., Mora Gimeno, F.J., Signes-Pont, M.T., Volckaert, B.: Multilayer architecture model for mobile cloud computing paradigm. Complexity e3951495 (2019). https://doi.org/10.1155/2019/3951495

  19. Mora, H., Peral, J., Ferrández, A., Gil, D., Szymanski, J.: Distributed architectures for intensive urban computing: a case study on smart lighting for sustainable cities. IEEE Access 7, 58449–58465 (2019). https://doi.org/10.1109/ACCESS.2019.2914613

    Article  Google Scholar 

  20. Mora Mora, H., Gil, D., Colom López, J.F., Signes Pont, M.T.: Flexible framework for real-time embedded systems based on mobile cloud computing paradigm. Mob. Inf. Syst. 2015, e652462 (2015). https://doi.org/10.1155/2015/652462

    Article  Google Scholar 

  21. Nobile, M.S., Cazzaniga, P., Tangherloni, A., Besozzi, D.: Graphics processing units in bioinformatics, computational biology and systems biology. Brief. Bioinform. 18(5), 870–885 (2017). https://doi.org/10.1093/bib/bbw058

    Article  PubMed  Google Scholar 

  22. Novotný, J., Adámek, K., Armour, W.: Implementing CUDA Streams into AstroAccelerate - A Case Study (2021). https://doi.org/10.48550/ar**v.2101.00941

  23. Payne, J.L., Sinnott-Armstrong, N.A., Moore, J.H.: Exploiting graphics processing units for computational biology and bioinformatics. Interdiscip. Sci. Comput. Life Sci. 2(3), 213–220 (2010). https://doi.org/10.1007/s12539-010-0002-4

  24. Pramkaew, C., Ngamsuriyaroj, S.: Lightweight scheme of secure outsourcing SVD of a large matrix on cloud. J. Inf. Secur. Appl. 92–102 (2018). https://doi.org/10.1016/j.jisa.2018.06.003

  25. Qian, L., Luo, Z., Du, Y., Guo, L.: Cloud computing: an overview. In: Jaatun, M.G., Zhao, G., Rong, C. (eds.) CloudCom 2009. LNCS, vol. 5931, pp. 626–631. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10665-1_63

    Chapter  Google Scholar 

  26. Qiu, T., Chi, J., Zhou, X., Ning, Z., Atiquzzaman, M., Wu, D.O.: Edge computing in industrial internet of things: architecture, advances and challenges. IEEE Commun. Surv. Tutor. 2462–2488 (2020). https://doi.org/10.1109/COMST.2020.3009103

  27. Smajlović, H., Shajii, A., Berger, B., Cho, H., Numanagić, I.: Sequre: a high-performance framework for secure multiparty computation enables biomedical data sharing. Genome Biol. 24(1), 5 (2023). https://doi.org/10.1186/s13059-022-02841-5

    Article  PubMed  PubMed Central  Google Scholar 

  28. Suo, J., Gu, L., Yan, X., Yang, S., Hu, X., Wang, L.: PP-DDP: a privacy-preserving outsourcing framework for solving the double digest problem. BMC Bioinform. 34 (2023). https://doi.org/10.1186/s12859-023-05157-8

  29. Thavappiragasam, M., Kale, V., Hernandez, O., Sedova, A.: Addressing load imbalance in bioinformatics and biomedical applications: efficient scheduling across multiple GPUs. In: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1992–1999 (2021). https://doi.org/10.1109/BIBM52615.2021.9669317

  30. Waheed, A., et al.: A comprehensive review of computing paradigms, enabling computation offloading and task execution in vehicular networks. IEEE Access 3580–3600 (2022). https://doi.org/10.1109/ACCESS.2021.3138219

  31. Wu, H., Liu, W., Gong, Y., **, J.: Safe process quitting for GPU multi-process service (MPS). In: 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS), pp. 1169–1170 (2020). https://doi.org/10.1109/ICDCS47774.2020.00125

  32. Wu, Y., et al.: Generic server-aided secure multi-party computation in cloud computing. Comput. Stand. Interfaces 79, 103552 (2022). https://doi.org/10.1016/j.csi.2021.103552

    Article  Google Scholar 

  33. Yang, Y., et al.: A comprehensive survey on secure outsourced computation and its applications. IEEE Access 7, 159426–159465 (2019). https://doi.org/10.1109/ACCESS.2019.2949782

    Article  Google Scholar 

  34. Zhong, H., Sang, Y., Zhang, Y., **, Z.: Secure multi-party computation on blockchain: an overview. In: Shen, H., Sang, Y. (eds.) PAAP 2019. CCIS, vol. 1163, pp. 452–460. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-2767-8_40

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish Research Agency (AEI) under project HPC4Industry PID2020-120213RB-I00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Maciá-Lillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maciá-Lillo, A., Ramírez, T., Mora, H., Jimeno-Morenilla, A., Sánchez-Romero, JL. (2023). GPU Cloud Architectures for Bioinformatic Applications. In: Rojas, I., Valenzuela, O., Rojas Ruiz, F., Herrera, L.J., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2023. Lecture Notes in Computer Science(), vol 13919. Springer, Cham. https://doi.org/10.1007/978-3-031-34953-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34953-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34952-2

  • Online ISBN: 978-3-031-34953-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation