Part of the book series: Compact Textbooks in Mathematics ((CTM))

  • 363 Accesses

Abstract

In the last chapter, we discussed uniqueness in a special class of weak solutions called entropy solutions for scalar conservation laws, which are quasilinear first-order equations. The notion of a weak solution and an entropy solution is based on integration by parts or a variational principle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a subset A in a metric space M equipped with distance d, the distance function \(\operatorname {dist}(x,A)\) from A is defined by

    $$\displaystyle \begin{aligned} \operatorname{dist}(x,A):=\inf\left\{d(x,y)\bigm|y\in A\right\}.\end{aligned}$$

References

  1. M. Bardi, I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. With appendices by Maurizio Falcone and Pierpaolo Soravia. Systems & Control: Foundations & Applications (Birkhäuser Boston, Boston, MA, 1997)

    Google Scholar 

  2. M. Bardi, M.G. Crandall, L.C. Evans, H.M. Soner, P.E. Souganidis, Viscosity Solutions and Applications. Lecture Notes in Mathematics, vol. 1660 (Springer, Berlin, 1997)

    Google Scholar 

  3. G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi. Mathématiques & Applications (Berlin), vol. 17 (Springer, Paris, 1994)

    Google Scholar 

  4. G. Barles, H.M. Soner, P.E. Souganidis, Front propagation and phase field theory. SIAM J. Control Optim. 31, 439–469 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. E.N. Barron, R. Jensen, Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex Hamiltonians. Commun. Partial Differ. Equ. 15, 1713–1742 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. E.N. Barron, R. Jensen, Optimal control and semicontinuous viscosity solutions. Proc. Am. Math. Soc. 113, 397–402 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Y. Brenier, \(L^2\) formulation of multidimensional scalar conservation laws. Arch. Ration. Mech. Anal. 193, 1–19 (2009)

    Google Scholar 

  8. Y.G. Chen, Y. Giga, S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differ. Geom. 33, 749–786 (1991); Announcement Proc. Jpn. Acad. Ser. A Math. Sci. 65, 207–210 (1989)

    Google Scholar 

  9. Y.G. Chen, Y. Giga, S. Goto, Remarks on viscosity solutions for evolution equations. Proc. Jpn. Acad. Ser. A Math. Sci. 67, 323–328 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. M.G. Crandall, H. Ishii, P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27, 1–67 (1992)

    Google Scholar 

  11. M.G. Crandall, P.-L. Lions, Condition d’unicité pour les solutions généralisées des équations de Hamilton-Jacobi du premier ordre. C. R. Acad. Sci. Paris Sér. I Math. 292, 183–186 (1981)

    MathSciNet  MATH  Google Scholar 

  12. M.G. Crandall, P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 277, 1–42 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. L.C. Evans, Partial Differential Equations, 2nd edn. Graduate Studies in Mathematics, vol. 19. (American Mathematical Society, Providence, RI, 2010)

    Google Scholar 

  14. L.C. Evans, J. Spruck, Motion of level sets by mean curvature. I. J. Differ. Geom. 33, 635–681 (1991)

    MathSciNet  MATH  Google Scholar 

  15. A. Fathi, A. Siconolfi, PDE aspects of Aubry-Mather theory for quasiconvex Hamiltonians. Calc. Var. Partial Differ. Equ. 22, 185–228 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. W.H. Fleming, H.M. Soner, Controlled Markov Processes and Viscosity Solutions, 2nd edn. Stochastic Modelling and Applied Probability, vol. 25 (Springer, New York, 2006)

    Google Scholar 

  17. M.-H. Giga, Y. Giga, Evolving graphs by singular weighted curvature. Arch. Ration. Mech. Anal. 141, 117–198 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. M.-H. Giga, Y. Giga, Minimal Vertical Singular Diffusion Preventing Overturning for the Burgers Equation. Recent Advances in Scientific Computing and Partial Differential Equations (Hong Kong, 2002). Contemp. Math., vol. 330 (Amer. Math. Soc., Providence, RI, 2003), pp. 73–88

    Google Scholar 

  19. Y. Giga, Viscosity solutions with shocks. Commun. Pure Appl. Math. 55, 431–480 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Y. Giga, Surface Evolution Equations. A Level Set Approach. Monographs in Mathematics, vol. 99 (Birkhäuser Verlag, Basel, 2006)

    Google Scholar 

  21. Y. Giga, M.-H. Sato, A level set approach to semicontinuous viscosity solutions for Cauchy problems. Commun. Partial Differ. Equ. 26, 813–839 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. H. Ishii, Hamilton-Jacobi equations with discontinuous Hamiltonians on arbitrary open sets. Bull. Fac. Sci. Eng. Chuo Univ. 28, 33–77 (1985)

    MathSciNet  MATH  Google Scholar 

  23. H. Ishii, Perron’s method for Hamilton-Jacobi equations. Duke Math. J. 55, 369–384 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. H. Ishii, A simple, direct proof of uniqueness for solutions of the Hamilton-Jacobi equations of eikonal type. Proc. Am. Math. Soc. 100, 247–251 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  25. H. Ishii, Viscosity solutions of nonlinear partial differential equations [translation of Sūgaku 46, 144–157 (1994)]. Sugaku Expositions 9, 135–152 (1996)

    MathSciNet  Google Scholar 

  26. H. Ishii, H. Mitake, Representation formulas for solutions of Hamilton-Jacobi equations with convex Hamiltonians. Indiana Univ. Math. J. 56, 2159–2183 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Koike, A Beginner’s Guide to the Theory of Viscosity Solutions. MSJ Memoirs, vol. 13 (Mathematical Society of Japan, Tokyo, 2004)

    Google Scholar 

  28. S. Koike, Nenseikai. (Japanese) [Viscosity Solutions] Kyoritsu Kouza Sūgaku No Kagayaki, vol. 16. (Kyoritsu Shuppan Co., Tokyo, 2016)

    Google Scholar 

  29. S.G. Krantz, H.R. Parks, The Implicit Function Theorem. History, Theory, and Applications. Reprint of the 2003 edition. Modern Birkhäuser Classics (Birkhäuser/Springer, New York, 2013)

    Google Scholar 

  30. P.-L. Lions, Generalized Solutions of Hamilton-Jacobi Equations. Research Notes in Mathematics, vol. 69 (Pitman (Advanced Publishing Program), Boston, MA, London, 1982)

    Google Scholar 

  31. H. Morimoto, Stochastic Control and Mathematical Modeling. Applications in Economics. Encyclopedia of Mathematics and Its Applications, vol. 131 (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  32. S. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  33. M.H. Protter, H.F. Weinberger, Maximum Principles in Differential Equations. Corrected reprint of the 1967 original (Springer, New York, 1984), x+261 pp.

    Google Scholar 

  34. H.V. Tran, Hamilton-Jacobi Equations – Theory and Applications. Graduate Studies in Mathematics, vol. 213. (American Mathematical Society, Providence, RI, 2021)

    Google Scholar 

  35. Y.-H.R. Tsai, Y. Giga, S. Osher, A level set approach for computing discontinuous solutions of Hamilton-Jacobi equations. Math. Comput. 72, 159–181 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giga, MH., Giga, Y. (2023). Hamilton–Jacobi Equations. In: A Basic Guide to Uniqueness Problems for Evolutionary Differential Equations. Compact Textbooks in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-34796-2_4

Download citation

Publish with us

Policies and ethics

Navigation