The Sustainable Transition of the Public Bus Fleet in the City of São Paulo Until 2038

  • Chapter
  • First Online:
Business Model Innovation for Energy Transition

Abstract

In 2018, the city of São Paulo, Brazil enacted a law setting ambitious goals for the city’s public bus transport CO2, particulate matter, and NOx with a deadline for reaching the target in January 2038. This encompasses a rapid technological transition of diesel-based buses towards cleaner options such as zero-emission or low emission vehicles. However, for this transition to take place, decision-makers need to be aware of the technologies combination that can bring them closer to the legislation imposed. Therefore, this paper seeks to assess the goal imposed by the law, analysing the interaction between biodiesel, electric, hybrid, biomethane, and natural gas technologies to achieve reductions in CO2, PM, and NOx.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 49.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ODS 9—Build resilient infrastructures, promote inclusive and sustainable industrialization, and foster innovation.

  2. 2.

    ODS11—Making cities and human settlements inclusive, safe, resilient, and sustainable.

  3. 3.

    ODS13—Take urgent measures to combat climate change and its impacts.

References

  • ABEGAS. (2019). Ônibus movido a gás natural e biometano será testado em Curitiba [Online]. Available: https://www.abegas.org.br/arquivos/70934. Accessed September 2019.

  • Altenburg, T., Schamp, E. W., & Chaudhary, A. (2015). The emergence of electromobility: Comparing technological pathways in France, Germany, China and India. Science and Public Policy, Oxford University Press (OUP), 43(4), 464–475. https://doi.org/10.1093/scipol/scv054

  • ANTP. (2016). Impactos ambientais da substituição dos ônibus urbanos por veículos menos poluentes. In PÚBLICOS, A. N. D. T. (Ed.).

    Google Scholar 

  • Automotive-Business. (2015). Frota Circulante atinge 41,5 milhões de veículos [Online]. Available: http://www.automotivebusiness.com.br/noticia/21922/frota-circulante-atinge-415-milhoes-de-veiculos. Accessed September 2019.

  • BIODIESELBR. (2011). Emissão de poluentes atmosféricos locais do biodiesel em comparação com o diesel mineral [Online]. Available: https://www.biodieselbr.com/efeito-estufa/gases/emissoes. Accessed September 2019.

  • Dallmann, T. (2019). Benefícios de tecnologias de ônibus em termos de emissões de poluentes do ar e do clima em São Paulo. In Transportation, I.-T. I. C. O. C. (Ed.), ICCT—The International Council on Clean Transportation. ICCT—The International Council on Clean Transportation.

    Google Scholar 

  • De Carvalho, C. H. R. (2011). Emissões relativas de poluentes do transporte motorizado de passageiros nos grandes centros urbanos brasileiros. Texto para Discussão, Instituto de Pesquisa Econômica Aplicada (IPEA).

    Google Scholar 

  • EPA. (2019). Oil and gas extraction effluent guidelines [Online]. United States Environmental Protection Agency. Available: https://www.epa.gov/eg/oil-and-gas-extraction-effluent-guidelines. Accessed October 2019.

  • EPE. (2018). Balanço Energético Nacional 2018: Ano base 2017. Empresa de Pesquisa Energética.

    Google Scholar 

  • Falco, D. G. (2017). Avaliação do desempenho ambiental do transporte coletivo urbano no estado de São Paulo: Uma abordagem de ciclo de vida do ônibus a diesel e elétrico à bateria. Universidade Estadual de Campinas—UNICAMP.

    Google Scholar 

  • Filho, A. F. M. (2011). Avaliação do ciclo de vida de diferentes tecnologias de ônibus: Eficiência energética e emissões de poluentes em operação real. Rede C40 Cities (Grupo das Grandes Cidades líderes pelo Clima).

    Google Scholar 

  • Fontoura, W. B., Chaves, G. D. L. D., & Ribeiro, G. M. (2019). The Brazilian urban mobility policy: The impact in São Paulo transport system using system dynamics. Transport Policy, 73, 51–61.

    Article  Google Scholar 

  • Forrester, J. W. (1968). Industrial dynamics—after the first decade. Management Science, 14, 398–415.

    Article  Google Scholar 

  • Geels, F. W. (2004). From sectoral systems of innovation to socio-technical systems. Research Policy, Elsevier BV, 33(6–7), 897–920. https://doi.org/10.1016/j.respol.2004.01.015

    Article  Google Scholar 

  • Geels, F. W. (2011). The multi-level perspective on sustainability transitions: Responses to seven criticisms. Environmental Innovation and Societal Transitions, Elsevier BV, 1(1), 24–40. https://doi.org/10.1016/j.eist.2011.02.002

    Article  Google Scholar 

  • IEA. (2018). Global EV outlook 2018: Towards cross-modal electrification. IEA.

    Google Scholar 

  • Kemp, R., & Loorbach, D. (2003). Governance for sustainability through transition management. In Open meeting of human dimensions of global environmental change research community, Montreal, Canada (S.l.: s.n., Vol. 20).

    Google Scholar 

  • Loorbach, D., & Rotmans, J. (2010). Transition management and strategic niche management. [S.l.: s.n.]. Dutch Research Institute for Transitions.

    Google Scholar 

  • Markard, J., Bento, N., Kittner, N., & Nuñez-Jimenez, A. (2020). Destined for decline? Examining nuclear energy from a technological innovation systems perspective. Energy Research & Social Science, Elsevier BV, 67, 101512. https://doi.org/10.1016/j.erss.2020.101512

    Article  Google Scholar 

  • Markard, J., Raven, R., & Truffer, B. (2012). Sustainability transitions: An emerging field of research and its prospects. Research Policy, Elsevier BV, 41(6), 955–967. https://doi.org/10.1016/j.respol.2012.02.013

    Article  Google Scholar 

  • Miller, J., & Façanha, C. (2016). Cost-benefit analysis of Brazil’s heavy-duty emission standards (P-8). International Council on Clean Transportation.

    Google Scholar 

  • MMA. (2011). 1º Inventário Nacional de Emissões Atmosféricas por Veículos Automotores Rodoviários. In Ambiente, M. D. M. (Ed.).

    Google Scholar 

  • MMA. (2013). Inventário Nacional de Emissões Atmosféricas por Veículos Automotores Rodoviários.

    Google Scholar 

  • NEB. (2018). National energy balance, 2018: Base year 2017.

    Google Scholar 

  • Nilsson, M., & Nykvist, B. (2016). Governing the electric vehicle transition—Near term interventions to support a green energy economy. Applied Energy, Elsevier BV, 179, 1360–1371. https://doi.org/10.1016/j.apenergy.2016.03.056

    Article  Google Scholar 

  • Olsson, O., Grauers, A., & Pettersson, S. (2016). Method to analyze the cost-effectiveness of different electric bus systems. 29th World Electric Vehicle Symposium and Exhibition, EVS.

    Google Scholar 

  • ONU. (2019). 17 Objetivos para transformar nosso mundo [Online]. Available: https://nacoesunidas.org/pos2015/agenda2030/. Accessed September 2019.

  • Raymundo, H., & Reis, J. G. M. (2015). Renovação da Frota de Ônibus Urbano: Redução de Consumo de Energia e de Impactos Ambientais. 5ª Academic International Workshop Advances in Cleaner Production.

    Google Scholar 

  • Roitman, T., & Da Silva, T. B. (2018). Concorrência interenergética e intermodal no setor de transportes: possibilidades para o Brasil. Boletim de Conjuntura, 15–23.

    Google Scholar 

  • Rotmans, J., Kemp, R., & Van Asselt, M. (2001). More evolution than revolution: Transition management in public policy. Foresight, 3(1), 15–31.

    Article  Google Scholar 

  • Sayyadi, R., & Awasthi, A. (2017). A system dynamics-based simulation model to evaluate regulatory policies for sustainable transportation planning. International Journal of Modelling Simulation, 37, 25–35.

    Article  Google Scholar 

  • SCANIA. (2018). SCANIA faz a maior venda de ônibus urbanos de sua história [Online]. Available: https://www.scania.com/br/pt/home/experience-scania/news-and-events/News/archive/2018/11/default-press-release2.html. Accessed September 2019.

  • Segantin, C. C. (2019). Barreiras e facilitadores para a implantação de ônibus elétrico no sistema de transporte público de São Paulo. Dissertação de Mestrado. Universidade Nove de Julho.

    Google Scholar 

  • Shepherd, S. (2014). A review of system dynamics models applied in transportation. Transportmetrica B: Transport Dynamics, 2, 83–105.

    Google Scholar 

  • SIAMIG. (2018). Biometano e a redução das emissões do transporte urbano [Online]. Available: http://www.siamig.com.br/artigos/biometano-e-a-reducao-das-emissoes-do-transporte-urbano. Accessed September 2019.

  • Slowik, P., Araujo, C., Dallmann, T., & Façanha, C. (2018). Avaliação Internacional de Politicas Públicas para Eletromobilidade em Frotas Urbanas. PROMOB-E.

    Google Scholar 

  • SPTrans. (2019). Valores das Tarifas Vigentes a partir de 07/01/2019 [Online]. SPTrans. Available: https://www.prefeitura.sp.gov.br/cidade/secretarias/transportes/institucional/sptrans/acesso_a_informacao/index.php?p=227887. Accessed September 2019.

  • Tukker, A., & Butter, M. (2007). Governance of sustainable transitions: About the 4(0) ways to change the world. Journal of Cleaner Production, Elsevier BV, 15(1), 94–103. https://doi.org/10.1016/j.jclepro.2005.08.016

    Article  Google Scholar 

  • Vaz, C. R., & Maldonado, M. U. (2016). O que é a dinâmica de sistemas? Reflexões sobre sua evolução e sobre as oportunidades de aplicação na Gestão de Operações. SIMPOI.

    Google Scholar 

  • Weber, K. M. (2003). Transforming large socio-technical systems towards sustainability: On the role of users and future visions for the uptake of city logistics and combined heat and power generation. Innovation: The European Journal of Social Science Research, Informa UK Limited, 16(2), 155–175. https://doi.org/10.1080/13511610304522

  • Wen, L., & Bai, L. (2017). System dynamics modeling and policy simulation for urban traffic: A case study in Bei**g. Environmental Modeling Assessment, 22, 363–378.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Uriona Maldonado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Volan, T., Uriona Maldonado, M., Rodrigues Vas, C. (2023). The Sustainable Transition of the Public Bus Fleet in the City of São Paulo Until 2038. In: Herrera, M.M. (eds) Business Model Innovation for Energy Transition. Palgrave Studies in Democracy, Innovation, and Entrepreneurship for Growth. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-031-34793-1_5

Download citation

Publish with us

Policies and ethics

Navigation