Optimization of Axially Compressed Rods with Mixed Boundary Conditions

  • Chapter
  • First Online:
Fundamentals of Structural Optimization

Part of the book series: Mathematical Engineering ((MATHENGIN))

  • 108 Accesses

Abstract

The optimization problem for a column with arbitrary clamped ends, loaded by compression forces is studied in this chapter. The closed-form solutions for boundary conditions of mixed type are derived. The solutions are expressed in terms of the higher transcendental functions. The principal results are the closed form solution in terms of the elliptic functions, the analysis of bimodal regimes, and the exact bounds for the masses of the optimal columns. The isoperimetric inequality was formulated as the strict inequality sign, because the optimal solution could not be attained for any finite setting of the design parameter. The additional restriction on the minimal area of the cross-section regularizes the optimization problem and leads to the definite attainable shape of the optimal column.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Masur, E. F. (1975). Optimal placement of available sections in structural eigenvalue problems. Journal of Optimization Theory and Applications, 15(1), 69–84.

    Article  MathSciNet  MATH  Google Scholar 

  2. Olhoff, N., & Ramussen, S. H. (1977). On single and bimodal buckling loads of clamped columns. International Journal of Solids and Structures, 13(7), 605–614.

    Article  MATH  Google Scholar 

  3. Tadjbakhsh, I., & Keller, J. B. (1962). Strongest columns and isoperimetric inequalities for eigenvalues. Transaction of ASME, Series E, Journal of Applied Mechanics, 29(1), 159–164.

    Google Scholar 

  4. Haug, E. J., & Rousselet, B. (1981). Design sensitivity of eigenvalue variations. In E. J. Haug & J. Cea (Eds.), Optimal design of distributed structures (pp. 1370–1396). Sijthoff-Noordhoff, Leyden.

    Google Scholar 

  5. Zolesio, J. P. (1981). Semi-derivatives of repeated eigenvalues. In E. J. Haug & J. Cea (Eds.), Optimal design of distributed structures (pp. 1457–1473). Sijthoff-Noordhoff, Leyden.

    Google Scholar 

  6. Kirmser, P. G., & Hu R. R. (1983). The strongest fixed-point column. Kansas State University Engineering Experiment Station Report #160.

    Google Scholar 

  7. Masur, E. F. (1984). Optimal structural design under multiple eigenvalue constraints. International Journal of Solids and Structures, 20(3), 211–231.

    Article  MathSciNet  MATH  Google Scholar 

  8. Myers, M. K., & Spillers W. R. (1986). A note on the strongest fixed-fixed column. Quarterly of Applied Mathematics, XLIV(3), 583–588.

    Google Scholar 

  9. Olhoff, N., & Rasmussen, S. H. (1977). On single and bimodal optimum buckling loads of clamped columns. International Journal of Solids and Structures, 13(7), 605–614. https://doi.org/10.1016/0020-7683(77)90043-9, https://www.sciencedirect.com/science/article/pii/0020768377900439

  10. Cox, S. J., & Overton, M. L. (1992). On the optimal design of columns against buckling. SIAM Journal on Mathematical Analysis.

    Google Scholar 

  11. Mroz, Z., & Rozvany, G. I. N. (1975). Optimal design of structures with variable support conditions. Journal of Optimization Theory Application, 15, 85–101.

    Article  MathSciNet  MATH  Google Scholar 

  12. Mroz, Z., & Rozvany, G. I. N. (1977). Column design: Optimization of support conditions and segmentation. Journal of Structural Mechanics, 5, 279–290.

    Article  Google Scholar 

  13. Rozvany, G. I. N., & Mroz, Z. (1977). Column design: Optimization of support conditions and segmentation. Journal of Structural Mechanics, 5(3), 279–290.

    Article  Google Scholar 

  14. Hornbuckle, J. C., & Boykin, W. H. (1978). Equivalence of a constrained minimum weight and maximum column buckling load problem with solution. Journal of Applied Mechanics, ASME, 45, 159–164.

    Article  MATH  Google Scholar 

  15. Turner, H. K., & Plaut, R. H. (1980). Optimal design for stability under multiple loads. Journal of the Engineering Mechanics Division, Proceedings ASCE, 106, 1365–1382.

    Article  Google Scholar 

  16. Banichuk, N. V., & Larichev, A. D. (1981). Optimization problem for reinforced composite beams subjected to compression and bending. Stroit. Mechanika i Rashchet Sooruzhenii, 6, 9912.

    Google Scholar 

  17. Banichuk, N. V., & Barsuk, A. A. (1982) Optimization of stability of elastic columns against simultaneous compression and torsion. Applied Problems of Strength and Plasticity, 122–126.

    Google Scholar 

  18. Plaut, R. H., Johnson, L. W., & Olhoff, N. (1986). Bimodal optimization of compressed columns on elastic foundations. Journal of Applied Mechanics, 53, 130–134.

    Article  MATH  Google Scholar 

  19. Goh, G. J., Wang, C. M., & Teo, K. L. (1991). Unified approach to structural optimization II: Variable segment boundaries and variable interior point constraints. Journal of Structural Optimization, 3, 133–140.

    Article  Google Scholar 

  20. Ishida, R., & Sugiyama, Y. (1995). Proposal of constructive algorithm and discrete shape design of the strongest column. AIAA Journal, 33(3). https://doi.org/10.2514/3.12591. Corpus ID: 119850344.

  21. Manickarajah, D., **e, Y. M., & Steven, G. P. (2000). Optimization of columns and frames against buckling. Journal of Computer Structures, 75(1), 45–54.

    Article  Google Scholar 

  22. Maalawi, K. (2002). Buckling optimization of flexible columns. International Journal of Solids and Structures, 39(2002), 5865–5876.

    Article  MATH  Google Scholar 

  23. Bratus, A. S., & Seyranian, A. P. (1983). Bimodal solutions in problems of optimization of eigenvalues. Prikladnaia Matematika i Mechanika, 47(4), 546–554. (in Russian)

    Google Scholar 

  24. Seiranyan, A. P. (1984). On a problem of lagrange. Mechanic of Solids, 19(2), 101–111.

    MathSciNet  Google Scholar 

  25. Bratus, A. S. (1991). Condition of extremum for eigenvalues of elliptic boundary-value problems. Journal of Optimization Theory and Applications, 68, 423–436. https://doi.org/10.1007/BF00940063

    Article  MathSciNet  MATH  Google Scholar 

  26. Lewis, A., & Overton, M. (1996). Eigenvalue optimization. Acta Numerica, 5, 149–190. https://doi.org/10.1017/S0962492900002646

    Article  MathSciNet  MATH  Google Scholar 

  27. Egorov, Y. V., & Karaa, S. (1996). Sur La Forme Optimale D’une Colonne En Compression. C. R. Academy of Science Paris, 322, 519–524.

    MathSciNet  MATH  Google Scholar 

  28. Egorov, Y. V., & Kondrat’ev, V. A. (1996). Estimates for the first eigenvalue in some Sturm-Liouville problems. Russian Mathematical Surveys, 51(3), 439–508; Uspekhi Mat. Nauk, 51(3), 73–144.

    Google Scholar 

  29. Egorov, Yu. V., & Kodratiev, V. A. (1996). On the optimal column shape. Doklady Math, 54(2), 748–750.

    MATH  Google Scholar 

  30. Egorov, Y., & Kodratiev, V. (1996). On spectral theory of elliptic operators. Birkhauser Verlag.

    Google Scholar 

  31. Seyranian, A. P., & Privalova, O. G. (2003). The Lagrange problem on an optimal column: Old and new results. Structural Multidisciplinary Optimization, 25, 393–410.

    Article  MathSciNet  MATH  Google Scholar 

  32. Atanackovic, T. M., & Seyranian, A. P. (2008). Application of Pontryagin’s principle to bimodal optimization problems. Structural and Multidisciplinary Optimization, 37, 1–12.

    Article  MathSciNet  MATH  Google Scholar 

  33. Young, L. C. (1937). Generalized curves and the existence of an attained absolute minimum in the calculus of variations. Comptes Rendus de la Société des Sciences et des Lettres de Varsovie, 30, 211–234.

    MATH  Google Scholar 

  34. Athans, M., & Falb, P. L. (1966). Optimal control: An introduction to the theory and its applications (p. 879). McGraw-Hill.

    MATH  Google Scholar 

  35. Hazewinkel, M. (Ed.). (2001). Sturm-Liouville theory. Springer-Verlag.

    Google Scholar 

  36. Zettl, A. (2005). Sturm-Liouville theory. American Mathematical Society.

    MATH  Google Scholar 

  37. Agarwal, R. P., & O’Regan, D. (2008). An introduction to ordinary differential equations. Springer.

    Book  MATH  Google Scholar 

  38. Karaa, S. (2003). Properties of the first eigenfunctions of the clamped column equation. Theoretical Applied Mechanics, 30(4), 265–276.

    Google Scholar 

  39. Kobelev, V. (2016). Some exact analytical solution in structural optimization. Mechanics Based Design of Structures and Machines. https://doi.org/10.1080/15397734.2016.1143374

  40. Timoshenko, S., & Gere, J. M. (1961). Theory of elastic stability. McGraw-Hill.

    Google Scholar 

  41. Jerath, S. (2021). Structural stability theory and practice. John Wiley & Sons.

    Book  Google Scholar 

  42. Pachpatte, B. G. (2005). Mathematical inequalities. North-Holland Mathematical Library, 67, Elsevier.

    Google Scholar 

  43. Zwillinger, D., & Dobrushkin, V. (2022). Handbook of differential equations (4rd ed.). Taylor & Francis Group, LLC, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742.

    Google Scholar 

  44. Berkovic, L. M. (1997). Generalized Emden-Fowler equation. Symmetry in Nonlinear Mathematical Physics, 1, 155–163.

    MathSciNet  Google Scholar 

  45. Olver, P. J. (2012). Applications of lie groups to differential equations. Band 107 von Graduate Texts in Mathematics, Springer Science & Business Media, 497 p. ISBN: 1468402749, 9781468402742.

    Google Scholar 

  46. Oliveri, F. (2010). Lie symmetries of differential equations: Classical results and recent contributions. Symmetry, 2, 658–706. https://doi.org/10.3390/sym2020658

    Article  MathSciNet  MATH  Google Scholar 

  47. Gradshteyn, I. S., Ryzhik, I. M. (2014) Table of integrals, series, and products (8th ed.). Academic Press. https://doi.org/10.1016/C2010-0-64839-5. ISBN 978-0-12-384933-5.

  48. Abramowitz, M., & Stegun I. A. (Eds.). (1983). Handbook of mathematical functions with formulas, graphs, and mathematical tables. Applied Mathematics Series 55. United States Department of Commerce, National Bureau of Standards; Dover Publications.

    Google Scholar 

  49. Olver, F. W. J., et al. (2010). NIST handbook of mathematical functions (p. 967). Cambridge University Press.

    MATH  Google Scholar 

  50. Maple. (2022). Maplesoft. Une Division De Waterloo Maple Inc. 2021.

    Google Scholar 

  51. Chavel, I. (2001). Isoperimetric inequalities differential geometric and analytic perspectives. Cambridge University Press.

    MATH  Google Scholar 

  52. Cox, S. J., & McCarthy, C. M. (1998). The shape of the tallest column. SIAM Journal of Mathematical Analysis, 29(3), 547–554.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Kobelev .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kobelev, V. (2023). Optimization of Axially Compressed Rods with Mixed Boundary Conditions. In: Fundamentals of Structural Optimization. Mathematical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-34632-3_6

Download citation

Publish with us

Policies and ethics

Navigation