QPROM: Quantum Nanotechnology for Data Storage Using Programmable Read Only Memory

  • Conference paper
  • First Online:
Machine Intelligence and Emerging Technologies (MIET 2022)

Abstract

Quantum computing has the features of parallel and fast processing capability that makes it unique from other conventional computing systems. It has various peculiar properties, like entanglement, that can be leveraged as a resource to build technology. It is a nanotechnology-based qubit programming where different types of electromagnetic interactions are performed for basic operations as qubits and process information as single photons by recreating the quantum state. Quantum computers are more powerful than classical Turing machines because of their coherent superposition of states. Quantum memories would make massive photonic quantum computing systems possible by allowing coherent manipulation, buffering, and retiming of photonic signals. Though traditional PROM (Programmable Read Only Memory) is a slower memory, quantum computing enables the creation of new types of computers capable of operating with qubits as input states, increasing storage capacity. In this paper, a Quantum-based PROM architecture is proposed using algorithms of quantum-based basic operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 139.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mohammadi, M., Eshghi, M.: Behavioral description of quantum V and V+ gates to design quantum logic circuits. In: 5th International Multi-Conference on Systems, Signals and Devices, pp. 1–5. IEEE (2008)

    Google Scholar 

  2. National Academies of Sciences, Engineering, and Medicine. Quantum computing: progress and prospects. National Academies Press (2019)

    Google Scholar 

  3. Saffman, M.: Quantum computing with atomic qubits and Rydberg interactions: progress and challenges. J. Phys. B: At. Mol. Opt. Phys. 49(20), 202001 (2016)

    Article  Google Scholar 

  4. Van Meter, R., Horsman, D.: A blueprint for building a quantum computer. Commun. ACM 56(10), 84–93 (2013)

    Article  Google Scholar 

  5. Ramezani, S.B., Sommers, A., Manchukonda, H.K., Rahimi, S., Amirlatifi, A.: Machine learning algorithms in quantum computing: A survey. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2020)

    Google Scholar 

  6. Hempel, C., et al.: Quantum chemistry calculations on a trapped-ion quantum simulator. Phys. Rev. X 8, 031022 (2018)

    Google Scholar 

  7. Ors, R., Mugel, S., Lizaso, E.: Quantum computing for finance: overview and prospects. Rev. Phys. 4, 100028 (2019)

    Article  Google Scholar 

  8. Ciliberto, C., et al.: Quantum machine learning: a classical perspective. Proc. R. Soc. A: Math. Phys. Eng. Sci. 474(2209), 20170551 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dunjko, V., Briegel, H.J.: Machine learning & artificial intelligence in the quantum domain: a review of recent progress. Rep. Prog. Phys. 81(7), 074001 (2018)

    Article  MathSciNet  Google Scholar 

  10. Gambetta, J.M., Chow, J.M., Steffen, M.: Building logical qubits in a superconducting quantum computing system. npj Quant. Inf. 3(1), 1–7 (2017)

    Google Scholar 

  11. Wright, K., et al.: Benchmarking an 11-qubit quantum computer. Nat. Commun. 10(1), 1–6 (2019)

    Article  Google Scholar 

  12. Barenco, A., et al.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457 (1995)

    Article  Google Scholar 

  13. Kaye, P., Laflamme, R., Mosca, M.: An Introduction to Quantum Computing. Oxford University Press (2006). Jan 2007eBook-LinG, ISBN 0-19-857000-7

    Google Scholar 

  14. Gibney, E.: Hello quantum world! Google publishes landmark quantum supremacy claim. Nature 574(7779), 461–463 (2019)

    Article  Google Scholar 

  15. Hey, T.: Quantum computing: an introduction. Comput. Control Eng. J. 10(3), 105–112 (1999)

    Article  Google Scholar 

  16. Aspuru-Guzik, A., Dutoi, A.D., Love, P.J., Head-Gordon, M.: Simulated quantum computation of molecular energies. Science 309(5741), 1704–1707 (2005)

    Article  Google Scholar 

  17. Travaglione, B.C., Nielsen, M.A., Wiseman, H.M., Ambainis, A.: ROM-based computation: quantum versus classical. ar**v preprint quant-ph/0109016 (2001)

    Google Scholar 

  18. Wiseman, H.M., Milburn, G.J.: Quantum Measurement and Control. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  19. Nurdin, H.I., James, M.R., Petersen, I.R.: Coherent quantum LQG control. Automatica 45(8), 1837–1846 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Thapliyal, H., Ranganathan, N.: Design of reversible sequential circuits optimizing quantum cost, delay, and garbage outputs. ACM J. Emerg. Technol. Comput. Syst. (JETC) 6(4), 1–31 (2010)

    Article  Google Scholar 

  21. Wang, C., et al.: Towards practical quantum computers: transmon qubit with a lifetime approaching 0.5 milliseconds. npj Quant. Inf. 8(1), 1–6 (2022)

    Google Scholar 

  22. Dong, D., Petersen, I.R.: Quantum control theory and applications: a survey. IET Control Theory Appl. 4(12), 2651–2671 (2010)

    Article  MathSciNet  Google Scholar 

  23. Hadzihasanovic, A., Ng, K.F., Wang, Q.: Two complete axiomatisations of pure-state qubit quantum computing. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, pp. 502–511 (2018)

    Google Scholar 

  24. Blum, E., Castillo-Martin, M., Rosenberg, M.: Survey on the Security of the Quantum ROM (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamanna Tabassum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tabassum, T., Akter, F., Uddin, M.N. (2023). QPROM: Quantum Nanotechnology for Data Storage Using Programmable Read Only Memory. In: Satu, M.S., Moni, M.A., Kaiser, M.S., Arefin, M.S. (eds) Machine Intelligence and Emerging Technologies. MIET 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 491. Springer, Cham. https://doi.org/10.1007/978-3-031-34622-4_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34622-4_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34621-7

  • Online ISBN: 978-3-031-34622-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation