Vulnerability to Contamination of the Olón Aquifer Using the GOD Method, Olón-Ecuador

  • Chapter
  • First Online:
Sustainability in Practice

Abstract

Vulnerability is an indicator of foreseeable risks in aquifer’s quality, considering the environment and anthropogenic implications. This measure is determined by different conditions and realities of a system, such as air and water quality, economic studies, health and hygiene and landslides. Aquifers are prone to contamination by extrinsic and extrinsic factors affecting water quality. This work focuses on determining the vulnerability to contamination of the Olón aquifer, using the Groundwater Overlaying Depth (GOD) method for zoning the areas susceptible to contamination. The methodology consisted of three phases: (i) gathering of basic hydrogeological information; (ii) Application of geographic information systems according to the GOD method in the Olón aquifer; (iii) Analysis of the findings and elaboration of the vulnerability map. The results indicate that the aquifer, in its entire domain, has a high vulnerability index, mainly due to its intrinsic conditions and their relationship with anthropic activities in the sector. This methodology has made it possible to detect predominant factors that influence contamination and provides details for strategic planning of measures to be considered to preserve the resource and its nature. The extreme vulnerability near the coastline is caused by human settlement and tourist activities. This methodology made it possible to detect the predominant factors polluting the aquifer.; therefore, measures for protecting the community and its resources must be taken.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adger, W. N. (2006). Vulnerability. Global Environmental Change, 16(3), 268–281. https://doi.org/10.1016/j.gloenvcha.2006.02.006

    Article  Google Scholar 

  • Akhtar, N., Ishak, M. I. S., Bhawani, S. A., & Umar, K. (2021). Various natural and anthropogenic factors responsible for water quality degradation: A review. Water, 13(19), 2660. https://doi.org/10.3390/w13192660

    Article  CAS  Google Scholar 

  • Alsharifa, H. M. (2017). Assessing the groundwater vulnerability in the upper aquifers of Zarqa River Basin, Jordan using DRASTIC, SINTACS and GOD methods. International Journal of Water Resources and Environmental Engineering, 9(2), 44–53. https://doi.org/10.5897/IJWREE2016.0688

    Article  Google Scholar 

  • Boumaiza, L., Walter, J., Chesnaux, R., Brindha, K., Elango, L., Rouleau, A., Wachniew, P., & Stumpp, C. (2021). An operational methodology for determining relevant DRASTIC factors and their relative weights in the assessment of aquifer vulnerability to contamination. Environmental Earth Sciences, 80(7), 281. https://doi.org/10.1007/s12665-021-09575-w

    Article  CAS  Google Scholar 

  • Brennan, V. M. (2017). Vulnerability. Journal of Health Care for the Poor and Underserved, 28(3), viii–xii. https://doi.org/10.1353/hpu.2017.0080

  • Carrión-Mero, P., Pineda-Ruiz, R., Chávez, M. Á., Morante-Carballo, F., Blanco, R., Aguilar, M., & Briones-Bitar, J. (2020). Geomechanical evaluation of the Olón cliff for stabilization pre-design of the Blanca Estrella Del Mar Sanctuary, Santa Elena, Ecuador (pp. 467–79).

    Google Scholar 

  • Carrión-Mero, P., Javier Montalván, F., Morante-Carballo, F., Heredia, J., Javier Elorza, F., Solórzano, J., & Aguilera, H. (2021a). Hydrochemical and isotopic characterization of the waters of the Manglaralto River Basin (Ecuador) to contribute to the management of the coastal aquifer. Water, 13(4), 537. https://doi.org/10.3390/w13040537

  • Carrión-Mero, P., Morante-Carballo, F., Briones-Bitar, J., Herrera-Borja, P., Chávez-Moncayo, M., & Arévalo-Ochoa, J. (2021b). Design of a technical-artisanal dike for surface water storage and artificial recharge of the Manglaralto coastal aquifer. Santa Elena Parish, Ecuador. International Journal of Sustainable Development and Planning, 16(3), 515–523. https://doi.org/10.18280/ijsdp.160312

  • Carrión-Mero, P., Morante-Carballo, F., Herrera-Franco, G., Jaya-Montalvo, M., Rodríguez, D., Loor-Flores de Valgas, C., & Berrezueta, E. (2021c). Community-university partnership in water education and linkage process. Study case: Manglaralto, Santa Elena, Ecuador. Water (Switzerland), 13(15). https://doi.org/10.3390/w13151998

  • Carrión-Mero, P., Quiñonez-Barzola, X., Fernando Morante-Carballo, F., Montalván, J., Herrera-Franco, G., & Plaza-Úbeda, J. (2021d). Geometric model of a coastal aquifer to promote the sustainable use of water. Manglaralto, Ecuador. Water, 13(7), 923. https://doi.org/10.3390/w13070923

    Article  Google Scholar 

  • Carrión, P., Herrera, G., Briones, J., Sánchez, C., & Limón, J. (2018). Practical adaptations of ancestral knowledge for groundwater artificial recharge management of Manglaralto Coastal Aquifer, Ecuador. In WIT transactions on ecology and the environment (vol. 217, pp. 375–386).

    Google Scholar 

  • Díaz-Cruz, M. S., & Barceló, D. (2008). Trace organic chemicals contamination in ground water recharge. Chemosphere, 72(3), 333–342. https://doi.org/10.1016/j.chemosphere.2008.02.031

    Article  CAS  Google Scholar 

  • Dillon, P. (2005). Future management of aquifer recharge. Hydrogeology Journal, 13(1), 313–316. https://doi.org/10.1007/s10040-004-0413-6

    Article  Google Scholar 

  • Ferguson, G., & Gleeson, T. (2012). Vulnerability of coastal aquifers to groundwater use and climate change. Nature Climate Change, 2(5), 342–345. https://doi.org/10.1038/nclimate1413

    Article  Google Scholar 

  • Foster, S. S. D., & Hirata, R. C. A. (1991). Determinacion del riesgo de contaminacion de aguas subterraneas. Peru: Centro Panamericano de Ingenieria Sanitaria y Ciencias Del Ambiente/Organizacion Mundial de La Salud, 2, 81

    Google Scholar 

  • Foster, S., Hirata, R., Gomes, D., D’Elia, M., & Paris, M. (2002). Proteccion de La Calidad Del Agua Subterranea. Washington, DC

    Google Scholar 

  • Foster, S. S. D. (1987). Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. In Vulnerability of soil and groundwater to polluants (pp. 69–86). United Kingdom

    Google Scholar 

  • Fuentes, J. L. (2017). Aguas Subterraneas. Journal of Chemical Information and Modeling, 110(9), 1689–1699.

    Google Scholar 

  • Ghazavi, R., & Ebrahimi, Z. (2015). Assessing groundwater vulnerability to contamination in an arid environment using DRASTIC and GOD models. International Journal of Environmental Science and Technology, 12(9), 2909–2918. https://doi.org/10.1007/s13762-015-0813-2

    Article  CAS  Google Scholar 

  • Gogu, R. C., Hallet, V., & Dassargues, A. (2003). Comparison of aquifer vulnerability assessment techniques. Application to the Neblon River Basin (Belgium). Environmental Geology, 44(8), 881–892. https://doi.org/10.1007/s00254-003-0842-x

    Article  Google Scholar 

  • Herrera-Franco, G., Alvarado-Macancela, N., Gavín-Quinchuela, T., & Carrión-Mero, P. (2018). Participatory socio-ecological system: Manglaralto-Santa Elena, Ecuador. Geology, Ecology, and Landscapes, 2(4), 303–310. https://doi.org/10.1080/24749508.2018.1481632

  • Herrera-Franco, G., Bravo-Montero, L., Carrión-Mero, P., Morante-Carballo, F., & Apolo-Masache, B. (2020a). Community management of the Olón Coastal Aquifer, Ecuador, and its impact on the supply of water suitable for human consumption. In Sustainable development and planning XI (Vol. I, pp. 169–181). Guayaquil

    Google Scholar 

  • Herrera-Franco, G., Carrión-Mero, P., Aguilar-Aguilar, M., Morante-Carballo, F., Jaya-Montalvo, M., & Morillo-Balsera, M. C. (2020b). Groundwater resilience assessment in a communal coastal aquifer system: The case of Manglaralto in Santa Elena, Ecuador. Sustainability, 12(19), 8290. https://doi.org/10.3390/su12198290

    Article  Google Scholar 

  • Herrera-Franco, G., Carrión-Mero, P., Alvarado, N., Morante-Carballo, F., Maldonado, A., Caldevilla, P., Briones-Bitar, J., & Berrezueta, E. (2020c). Geosites and georesources to foster geotourism in communities: Case study of the Santa Elena Peninsula geopark project in Ecuador. Sustainability, 12(11), 4484. https://doi.org/10.3390/su12114484

  • INEC. (2010). Fascículo Provincial Santa Elena. Santa Elena

    Google Scholar 

  • Kim, B. J., Jeong, S., & Chung, J.-B. (2021). Research trends in vulnerability studies from 2000 to 2019: Findings from a bibliometric analysis. International Journal of Disaster Risk Reduction, 56, 102141. https://doi.org/10.1016/j.ijdrr.2021.102141

    Article  Google Scholar 

  • Kumar, M., Goswami, R., Patel, A. K., Srivastava, M., & Das, N. (2020). Scenario, perspectives and mechanism of arsenic and fluoride co-occurrence in the groundwater: A review. Chemosphere, 249, 126126. https://doi.org/10.1016/j.chemosphere.2020.126126

    Article  CAS  Google Scholar 

  • Li, J., Li, X., Lv, N., Yang, Y., **, B., Li, M., Bai, S., & Liu, D. (2015). Quantitative assessment of groundwater pollution intensity on typical contaminated sites in China using grey relational analysis and numerical simulation. Environmental Earth Sciences, 74(5), 3955–3968. https://doi.org/10.1007/s12665-014-3980-4

  • Lim, K.-Y., Hamilton, A. J., Jiang, S. C., Page, D., Vanderzalm, J., Dillon, P., Gonzalez, D., & Barry, K. (2015). Assessment of public health risk associated with viral contamination in harvested urban stormwater for domestic applications. Water, Air, & Soil Pollution, 227(9), 322. https://doi.org/10.1016/j.scitotenv.2015.03.077

    Article  CAS  Google Scholar 

  • Machiwal, D., Jha, M. K., Singh, V. P., & Mohan, C. (2018). Assessment and map** of groundwater vulnerability to pollution: Current status and challenges. Earth-Science Reviews, 185, 901–927. https://doi.org/10.1016/j.earscirev.2018.08.009

    Article  Google Scholar 

  • Manciati, C., Taupin, J. D., Patris, N., Leduc, C., & Casiot, C. (2021). Diverging water ages inferred from hydrodynamics, hydrochemical and isotopic tracers in a tropical andean volcano-sedimentary confined aquifer system. Frontiers in Water, 3. https://doi.org/10.3389/frwa.2021.597641

  • Martínez, M., Delgado, P., & Fabregat, V. (1998). Aplicación Del Método DRASTIC Para La Evaluación Del Riesgo de Afección a Las Aguas Subterráneas Por Una Obra Lineal. Jornadas Sobre La Contaminación de Las Aguas Subterráneas: Un Problema Pendiente, 413–420

    Google Scholar 

  • Mfonka, Z., Ndam Ngoupayou, J. R., Ndjigui, P. D., Kpoumie, A., Zammouri, M., Ngouh, A. N., Mouncherou, O. F., Rakotondrabe, F., & Rasolomanana, E. H. (2018). A GIS-based DRASTIC and GOD models for assessing alterites aquifer of three experimental watersheds in Foumban (Western-Cameroon). Groundwater for Sustainable Development, 7(June), 250–264. https://doi.org/10.1016/j.gsd.2018.06.006

  • Michelle Catuto Quinde, M., Javier Montalvan Toala, F., & Rubira Gómez, G. (2020). Hydrological modeling of the Manglaralto river for the generation of flood maps (Santa Elena-Ecuador). In Proceedings of the 18th LACCEI International Multi-Conference for Engineering, Education, and Technology: Engineering, Integration, And Alliances for A Sustainable Development” “Hemispheric Cooperation for Competitiveness and Prosperity on A Knowledge-Bas. Latin American and Caribbean Consortium of Engineering Institutions

    Google Scholar 

  • Morante-Carballo, F., Apolo-Masache, B., Carrión-Mero, P., Cedeño, B., & Montalvan-Toala, J. (2021). Considerations in the methodology for the technical-environmental viability of sanitary landfills in rural Communities. Northern Case of the Province of Santa Elena, Ecuador. International Journal of Sustainable Development and Planning, 16(2), 317–325. https://doi.org/10.18280/ijsdp.160211

  • Morante-Carballo, F., Gurumendi-Noriega, M., Cumbe-Vásquez, J., Bravo-Montero, L., & Carrión-Mero, P. (2022). Georesources as an alternative for sustainable development in COVID-19 times—A study case in Ecuador. Sustainability, 14(13), 7856. https://doi.org/10.3390/su14137856

    Article  CAS  Google Scholar 

  • Nasri, G., Hajji, S., Aydi, W., Boughariou, E., Allouche, N., & Bouri, S. (2021). Water vulnerability of coastal aquifers Using AHP and parametric models: Methodological overview and a case study assessment. Arabian Journal of Geosciences, 14(1), 59. https://doi.org/10.1007/s12517-020-06390-8

    Article  Google Scholar 

  • National Research Council. (1993). Ground water vulnerability assessment. National Academies Press

    Google Scholar 

  • Oroji, B. (2018). Groundwater vulnerability assessment using GIS-based DRASTIC and GOD in the Asadabad plain. Journal of Materials and Environmental Sciences, 9(6), 1809–1816. https://doi.org/10.26872/jmes.2018.9.6.201

  • Page, D., Vanderzalm, J., Dillon, P., Gonzalez, D., & Barry, K. (2016). Stormwater Quality review to evaluate treatment for drinking water supply via managed aquifer recharge. Water, Air, & Soil Pollution, 227(9), 322. https://doi.org/10.1007/s11270-016-3021-x

    Article  CAS  Google Scholar 

  • Rahmani, B., Javadi, S., & Shahdany, S. M. H. (2021). Evaluation of aquifer vulnerability using PCA technique and various clustering methods. Geocarto International, 36(18), 2117–2140. https://doi.org/10.1080/10106049.2019.1690057

    Article  Google Scholar 

  • Rodriguez-Galiano, V., Mendes, M. P., Garcia-Soldado, M. J., Chica-Olmo, M., & Ribeiro, L. (2014). Predictive modeling of groundwater nitrate pollution using random forest and multisource variables related to intrinsic and specific vulnerability: A case study in an agricultural setting (Southern Spain). Science of the Total Environment, 476–477, 189–206. https://doi.org/10.1016/j.scitotenv.2014.01.001

    Article  CAS  Google Scholar 

  • Taghavi, N., Niven, R. K., Paull, D. J., & Kramer, M. (2022). Groundwater vulnerability assessment: A review including new statistical and hybrid methods. Science of the Total Environment, 822, 153486. https://doi.org/10.1016/j.scitotenv.2022.153486

    Article  CAS  Google Scholar 

  • Vandenbohede, A., Van Houtte, E., & Lebbe, L. (2009). Sustainable groundwater extraction in coastal areas: A Belgian example. Environmental Geology, 57(4), 735–747. https://doi.org/10.1007/s00254-008-1351-8

    Article  CAS  Google Scholar 

  • Voudouris, K., Mandrali, P., & Kazakis, N. (2018). Preventing groundwater pollution using vulnerability and risk map**: The case of the Florina Basin, NW Greece. Geosciences, 8(4), 129. https://doi.org/10.3390/geosciences8040129

    Article  CAS  Google Scholar 

  • Wisner, B., Adams, J., & World Health Organization. (2002). Environmental health in emergencies and disasters: A practical guide (B. Wisner, & J. Adams, Ed.) (p. 24)

    Google Scholar 

  • World Health Organization. (2022). Agua Para Consumo Humano. Retrieved May 28, 2022, from https://www.who.int/es/news-room/fact-sheets/detail/drinking-water

Download references

Acknowledgements

We would like to express our appreciation to the project titled “Geophysical and hydrochemical characterization of the Manglaralto aquifer for the sustainability of the water resource”, code: 91870000.0000.382444, and to the project “Incidence of artificial recharge on piezometric levels and saline intrusion in the Manglaralto coastal aquifer for sustainable water management”, code: 91870000.0000.385426, and the research center CIGEO of the Santa Elena Peninsula University (UPSE) for their significant contribution to this research. We are also grateful to the project entitled “Water Sowing and Harvesting in the face of COVID-19, Manglaralto 2021” with code: PG03-PY21-03, and the project “Geodiversity Registry of geological and mining heritage and its impact on the defence and preservation of geodiversity in Ecuador” academic research project by ESPOL University under grant nos. CIPAT-01-2018, for the valuable contribution to this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joselyne Solórzano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Javier Montalván, F. et al. (2023). Vulnerability to Contamination of the Olón Aquifer Using the GOD Method, Olón-Ecuador. In: Leal Filho, W., Frankenberger, F., Tortato, U. (eds) Sustainability in Practice. World Sustainability Series. Springer, Cham. https://doi.org/10.1007/978-3-031-34436-7_31

Download citation

Publish with us

Policies and ethics

Navigation