Complexins: Ubiquitously Expressed Presynaptic Regulators of SNARE-Mediated Synaptic Vesicle Fusion

  • Chapter
  • First Online:
Molecular Mechanisms of Neurotransmitter Release

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 33))

  • 607 Accesses

Abstract

Neurotransmitter release is a spatially and temporally tightly regulated process, which requires assembly and disassembly of SNARE complexes to enable the exocytosis of transmitter-loaded synaptic vesicles (SVs) at presynaptic active zones (AZs). While the requirement for the core SNARE machinery is shared by most membrane fusion processes, SNARE-mediated fusion at AZs is uniquely regulated to allow very rapid Ca2+-triggered SV exocytosis following action potential (AP) arrival. To enable a sub-millisecond time course of AP-triggered SV fusion, synapse-specific accessory SNARE-binding proteins are required in addition to the core fusion machinery. Among the known SNARE regulators specific for Ca2+-triggered SV fusion are complexins, which are almost ubiquitously expressed in neurons. This chapter summarizes the structural features of complexins, models for their molecular interactions with SNAREs, and their roles in SV fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AA:

Amino Acids

AH:

Accessory Helix

AP:

Action potential

AZ:

Active zone

[Ca2+]:

Ca2+ concentration

CAPS:

Calcium-dependent Activator Protein for Secretion

CH:

Central Helix

CTD:

C-Terminal Domain

CNS:

Central nervous system

Cplx:

Complexin protein

DKD:

Double-knockdown

DKO:

Double-knockout

dm:

Drosophila melanogaster

eEPSC:

Evoked excitatory postsynaptic current

eIPSC:

Evoked inhibitory postsynaptic current

IPL:

Inner plexiform layer

K D :

Equilibrium dissociation constant

KD:

Knockdown

KO:

Knockout

k off :

Dissociation rate constant

k on :

Association rate constant

mEPSC:

Miniature excitatory postsynaptic current

MNTB:

Medial Nucleus of the Trapezoid Body

MW:

Molecular Weight

NTD:

N-Terminal Domain

NMJ :

Neuromuscular junction

OPL:

Outer plexiform layer

PD:

Parkinson’s disease

RRP:

Readily releasable pool

shRNA:

Short hairpin RNA

SNAP25:

Synaptosomal-associated protein, 25 kDa

SNARE :

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor

SNP:

Single nucleotide polymorphism

Stx:

Syntaxin

SV:

Synaptic vesicle

Syb:

Synaptobrevin

Syt:

Synaptotagmin

TKO:

Triple-knockout

UTR:

Untranslated region

VAMP:

Vesicle-Associated Membrane Protein

References

  1. Wojcik SM, Brose N. Regulation of membrane fusion in synaptic excitation-secretion coupling: speed and accuracy matter. Neuron. 2007;55:11–24. https://doi.org/10.1016/j.neuron.2007.06.013.

    Article  CAS  PubMed  Google Scholar 

  2. Südhof TC. Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron. 2013;80:675–90. https://doi.org/10.1016/j.neuron.2013.10.022.

    Article  CAS  PubMed  Google Scholar 

  3. Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, et al. SNAREpins: minimal machinery for membrane fusion. Cell. 1998;92:759–72. https://doi.org/10.1016/s0092-8674(00)81404-x.

    Article  CAS  PubMed  Google Scholar 

  4. Rizo J, Xu J. The synaptic vesicle release machinery. Annu Rev Biophys. 2015;44:339–67. https://doi.org/10.1146/annurev-biophys-060414-034057.

    Article  CAS  PubMed  Google Scholar 

  5. Südhof TC, Rothman JE. Membrane fusion: grappling with SNARE and SM proteins. Science. 2009;323:474–7. https://doi.org/10.1126/science.1161748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jahn R, Fasshauer D. Molecular machines governing exocytosis of synaptic vesicles. Nature. 2012;490:201–7. https://doi.org/10.1038/nature11320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Augustin I, Rosenmund C, Südhof TC, Brose N. Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles. Nature. 1999;400:457–61. https://doi.org/10.1038/22768.

    Article  CAS  PubMed  Google Scholar 

  8. Jockusch WJ, Speidel D, Sigler A, Sorensen JB, Varoqueaux F, Rhee JS, et al. CAPS-1 and CAPS-2 are essential synaptic vesicle priming proteins. Cell. 2007;131:796–808. https://doi.org/10.1016/j.cell.2007.11.002.

    Article  CAS  PubMed  Google Scholar 

  9. Verhage M, Maia AS, Plomp JJ, Brussaard AB, Heeroma JH, Vermeer H, et al. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science. 2000;287:864–9. https://doi.org/10.1126/science.287.5454.864.

    Article  CAS  PubMed  Google Scholar 

  10. Fernandez-Chacon R, Königstorfer A, Gerber SH, Garcia J, Matos MF, Stevens CF, et al. Synaptotagmin I functions as a calcium regulator of release probability. Nature. 2001;410:41–9. https://doi.org/10.1038/35065004.

    Article  CAS  PubMed  Google Scholar 

  11. Maximov A, Südhof TC. Autonomous function of synaptotagmin 1 in triggering synchronous release independent of asynchronous release. Neuron. 2005;48:547–54. https://doi.org/10.1016/j.neuron.2005.09.006.

    Article  CAS  PubMed  Google Scholar 

  12. Reim K, Mansour M, Varoqueaux F, McMahon HT, Südhof TC, Brose N, et al. Complexins regulate a late step in Ca2+-dependent neurotransmitter release. Cell. 2001;104:71–81. https://doi.org/10.1016/s0092-8674(01)00192-1.

    Article  CAS  PubMed  Google Scholar 

  13. McMahon HT, Missler M, Li C, Südhof TC. Complexins: cytosolic proteins that regulate SNAP receptor function. Cell. 1995;83:111–9. https://doi.org/10.1016/0092-8674(95)90239-2.

    Article  CAS  PubMed  Google Scholar 

  14. Ishizuka T, Saisu H, Suzuki T, Kirino Y, Abe T. Molecular cloning of synaphins/complexins, cytosolic proteins involved in transmitter release, in the electric organ of an electric ray (Narke japonica). Neurosci Lett. 1997;232:107–10. https://doi.org/10.1016/s0304-3940(97)00586-7.

    Article  CAS  PubMed  Google Scholar 

  15. Kusick GF, Ogunmowo TH, Watanabe S. Transient docking of synaptic vesicles: implications and mechanisms. Curr Opin Neurobiol. 2022;74:102535. https://doi.org/10.1016/j.conb.2022.102535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Neher E, Brose N. Dynamically primed synaptic vesicle states: key to understand synaptic short-term plasticity. Neuron. 2018;100:1283–91. https://doi.org/10.1016/j.neuron.2018.11.024.

    Article  CAS  PubMed  Google Scholar 

  17. Rosenmund C, Rettig J, Brose N. Molecular mechanisms of active zone function. Curr Opin Neurobiol. 2003;13:509–19. https://doi.org/10.1016/j.conb.2003.09.011.

    Article  CAS  PubMed  Google Scholar 

  18. Südhof TC. The molecular machinery of neurotransmitter release (Nobel lecture). Angew Chem Int Ed Engl. 2014;53:12696–717. https://doi.org/10.1002/anie.201406359.

    Article  CAS  PubMed  Google Scholar 

  19. Xue M, Craig TK, Xu J, Chao HT, Rizo J, Rosenmund C. Binding of the complexin N terminus to the SNARE complex potentiates synaptic-vesicle fusogenicity. Nat Struct Mol Biol. 2010;17:568–75. https://doi.org/10.1038/nsmb.1791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huntwork S, Littleton JT. A complexin fusion clamp regulates spontaneous neurotransmitter release and synaptic growth. Nat Neurosci. 2007;10:1235–7. https://doi.org/10.1038/nn1980.

    Article  CAS  PubMed  Google Scholar 

  21. Giraudo CG, Eng WS, Melia TJ, Rothman JE. A clam** mechanism involved in SNARE-dependent exocytosis. Science. 2006;313:676–80. https://doi.org/10.1126/science.1129450.

    Article  CAS  PubMed  Google Scholar 

  22. Tang J, Maximov A, Shin OH, Dai H, Rizo J, Südhof TC. A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis. Cell. 2006;126:1175–87. https://doi.org/10.1016/j.cell.2006.08.030.

    Article  CAS  PubMed  Google Scholar 

  23. Schaub JR, Lu X, Doneske B, Shin YK, McNew JA. Hemifusion arrest by complexin is relieved by Ca2+-synaptotagmin I. Nat Struct Mol Biol. 2006;13:748–50. https://doi.org/10.1038/nsmb1124.

    Article  CAS  PubMed  Google Scholar 

  24. Pabst S, Hazzard JW, Antonin W, Sudhof TC, Jahn R, Rizo J, et al. Selective interaction of complexin with the neuronal SNARE complex. Determination of the binding regions. J Biol Chem. 2000;275:19808–18. https://doi.org/10.1074/jbc.M002571200.

    Article  CAS  PubMed  Google Scholar 

  25. Pabst S, Margittai M, Vainius D, Langen R, Jahn R, Fasshauer D. Rapid and selective binding to the synaptic SNARE complex suggests a modulatory role of complexins in neuroexocytosis. J Biol Chem. 2002;277:7838–48. https://doi.org/10.1074/jbc.M109507200.

    Article  CAS  PubMed  Google Scholar 

  26. Chen X, Tomchick DR, Kovrigin E, Arac D, Machius M, Südhof TC, et al. Three-dimensional structure of the complexin/SNARE complex. Neuron. 2002;33:397–409. https://doi.org/10.1016/s0896-6273(02)00583-4.

    Article  CAS  PubMed  Google Scholar 

  27. Bowen ME, Weninger K, Ernst J, Chu S, Brunger AT. Single-molecule studies of synaptotagmin and complexin binding to the SNARE complex. Biophys J. 2005;89:690–702. https://doi.org/10.1529/biophysj.104.054064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li Y, Augustine GJ, Weninger K. Kinetics of complexin binding to the SNARE complex: correcting single molecule FRET measurements for hidden events. Biophys J. 2007;93:2178–87. https://doi.org/10.1529/biophysj.106.101220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Krishnakumar SS, Li F, Coleman J, Schauder CM, Kummel D, Pincet F, et al. Re-visiting the trans insertion model for complexin clam**. elife. 2015;4 https://doi.org/10.7554/eLife.04463.

  30. Heo S, Diering GH, Na CH, Nirujogi RS, Bachman JL, Pandey A, et al. Identification of long-lived synaptic proteins by proteomic analysis of synaptosome protein turnover. Proc Natl Acad Sci U S A. 2018;115:E3827–E36. https://doi.org/10.1073/pnas.1720956115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dörrbaum AR, Kochen L, Langer JD, Schuman EM. Local and global influences on protein turnover in neurons and glia. elife. 2018;7 https://doi.org/10.7554/eLife.34202.

  32. Lopez-Murcia FJ, Reim K, Jahn O, Taschenberger H, Brose N. Acute Complexin knockout abates spontaneous and evoked transmitter release. Cell Rep. 2019;26:2521–30 e5. https://doi.org/10.1016/j.celrep.2019.02.030.

    Article  CAS  Google Scholar 

  33. Fornasiero EF, Mandad S, Wildhagen H, Alevra M, Rammner B, Keihani S, et al. Precisely measured protein lifetimes in the mouse brain reveal differences across tissues and subcellular fractions. Nat Commun. 2018;9:4230. https://doi.org/10.1038/s41467-018-06519-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Reim K, Wegmeyer H, Brandstätter JH, Xue M, Rosenmund C, Dresbach T, et al. Structurally and functionally unique complexins at retinal ribbon synapses. J Cell Biol. 2005;169:669–80. https://doi.org/10.1083/jcb.200502115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Takahashi S, Yamamoto H, Matsuda Z, Ogawa M, Yagyu K, Taniguchi T, et al. Identification of two highly homologous presynaptic proteins distinctly localized at the dendritic and somatic synapses. FEBS Lett. 1995;368:455–60. https://doi.org/10.1016/0014-5793(95)00713-j.

    Article  CAS  PubMed  Google Scholar 

  36. Yang X, Pei J, Kaeser-Woo YJ, Bacaj T, Grishin NV, Südhof TC. Evolutionary conservation of complexins: from choanoflagellates to mice. EMBO Rep. 2015;16:1308–17. https://doi.org/10.15252/embr.201540305.

    Article  CAS  PubMed  Google Scholar 

  37. Buhl LK, Jorquera RA, Akbergenova Y, Huntwork-Rodriguez S, Volfson D, Littleton JT. Differential regulation of evoked and spontaneous neurotransmitter release by C-terminal modifications of complexin. Mol Cell Neurosci. 2013;52:161–72. https://doi.org/10.1016/j.mcn.2012.11.009.

    Article  CAS  PubMed  Google Scholar 

  38. Xue M, Lin YQ, Pan H, Reim K, Deng H, Bellen HJ, et al. Tilting the balance between facilitatory and inhibitory functions of mammalian and Drosophila Complexins orchestrates synaptic vesicle exocytosis. Neuron. 2009;64:367–80. https://doi.org/10.1016/j.neuron.2009.09.043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cho RW, Song Y, Littleton JT. Comparative analysis of Drosophila and mammalian complexins as fusion clamps and facilitators of neurotransmitter release. Mol Cell Neurosci. 2010;45:389–97. https://doi.org/10.1016/j.mcn.2010.07.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yamada M, Saisu H, Ishizuka T, Takahashi H, Abe T. Immunohistochemical distribution of the two isoforms of synaphin/complexin involved in neurotransmitter release: localization at the distinct central nervous system regions and synaptic types. Neuroscience. 1999;93:7–18. https://doi.org/10.1016/s0306-4522(99)00104-9.

    Article  CAS  PubMed  Google Scholar 

  41. Freeman W, Morton AJ. Differential messenger RNA expression of complexins in mouse brain. Brain Res Bull. 2004;63:33–44. https://doi.org/10.1016/j.brainresbull.2003.12.003.

    Article  CAS  PubMed  Google Scholar 

  42. Ishizuka T, Saisu H, Odani S, Kumanishi T, Abe T. Distinct regional distribution in the brain of messenger RNAs for the two isoforms of synaphin associated with the docking/fusion complex. Neuroscience. 1999;88:295–306. https://doi.org/10.1016/s0306-4522(98)00223-1.

    Article  CAS  PubMed  Google Scholar 

  43. Freeman W, Morton AJ. Regional and progressive changes in brain expression of complexin II in a mouse transgenic for the Huntington's disease mutation. Brain Res Bull. 2004;63:45–55. https://doi.org/10.1016/j.brainresbull.2003.12.004.

    Article  CAS  PubMed  Google Scholar 

  44. Strenzke N, Chanda S, Kopp-Scheinpflug C, Khimich D, Reim K, Bulankina AV, et al. Complexin-I is required for high-fidelity transmission at the endbulb of Held auditory synapse. J Neurosci. 2009;29:7991–8004. https://doi.org/10.1523/JNEUROSCI.0632-09.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chang S, Reim K, Pedersen M, Neher E, Brose N, Taschenberger H. Complexin stabilizes newly primed synaptic vesicles and prevents their premature fusion at the mouse calyx of held synapse. J Neurosci. 2015;35:8272–90. https://doi.org/10.1523/JNEUROSCI.4841-14.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ono S, Baux G, Sekiguchi M, Fossier P, Morel NF, Nihonmatsu I, et al. Regulatory roles of complexins in neurotransmitter release from mature presynaptic nerve terminals. Eur J Neurosci. 1998;10:2143–52. https://doi.org/10.1046/j.1460-9568.1998.00225.x.

    Article  CAS  PubMed  Google Scholar 

  47. Xue M, Stradomska A, Chen H, Brose N, Zhang W, Rosenmund C, et al. Complexins facilitate neurotransmitter release at excitatory and inhibitory synapses in mammalian central nervous system. Proc Natl Acad Sci U S A. 2008;105:7875–80. https://doi.org/10.1073/pnas.0803012105.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Reim K, Regus-Leidig H, Ammermuller J, El-Kordi A, Radyushkin K, Ehrenreich H, et al. Aberrant function and structure of retinal ribbon synapses in the absence of complexin 3 and complexin 4. J Cell Sci. 2009;122:1352–61. https://doi.org/10.1242/jcs.045401.

    Article  CAS  PubMed  Google Scholar 

  49. Landgraf I, Mühlhans J, Dedek K, Reim K, Brandstätter JH, Ammermüller J. The absence of Complexin 3 and Complexin 4 differentially impacts the ON and OFF pathways in mouse retina. Eur J Neurosci. 2012;36:2470–81. https://doi.org/10.1111/j.1460-9568.2012.08149.x.

    Article  PubMed  Google Scholar 

  50. Uthaiah RC, Hudspeth AJ. Molecular anatomy of the hair cell's ribbon synapse. J Neurosci. 2010;30:12387–99. https://doi.org/10.1523/JNEUROSCI.1014-10.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bracher A, Kadlec J, Betz H, Weissenhorn W. X-ray structure of a neuronal complexin-SNARE complex from squid. J Biol Chem. 2002;277:26517–23. https://doi.org/10.1074/jbc.M203460200.

    Article  CAS  PubMed  Google Scholar 

  52. Xue M, Reim K, Chen X, Chao HT, Deng H, Rizo J, et al. Distinct domains of complexin I differentially regulate neurotransmitter release. Nat Struct Mol Biol. 2007;14:949–58. https://doi.org/10.1038/nsmb1292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Trimbuch T, Xu J, Flaherty D, Tomchick DR, Rizo J, Rosenmund C. Re-examining how complexin inhibits neurotransmitter release. elife. 2014;3:e02391. https://doi.org/10.7554/eLife.02391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Giraudo CG, Garcia-Diaz A, Eng WS, Chen Y, Hendrickson WA, Melia TJ, et al. Alternative zippering as an on-off switch for SNARE-mediated fusion. Science. 2009;323:512–6. https://doi.org/10.1126/science.1166500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Radoff DT, Dong Y, Snead D, Bai J, Eliezer D, Dittman JS. The accessory helix of complexin functions by stabilizing central helix secondary structure. elife. 2014;3 https://doi.org/10.7554/eLife.04553.

  56. Lai Y, Choi UB, Zhang Y, Zhao M, Pfuetzner RA, Wang AL, et al. N-terminal domain of complexin independently activates calcium-triggered fusion. Proc Natl Acad Sci U S A. 2016;113:E4698–707. https://doi.org/10.1073/pnas.1604348113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hobson RJ, Liu Q, Watanabe S, Jorgensen EM. Complexin maintains vesicles in the primed state in C. elegans. Curr Biol. 2011;21:106–13. https://doi.org/10.1016/j.cub.2010.12.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang FL, Casey PJ. Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem. 1996;65:241–69. https://doi.org/10.1146/annurev.bi.65.070196.001325.

    Article  CAS  PubMed  Google Scholar 

  59. Snead D, Wragg RT, Dittman JS, Eliezer D. Membrane curvature sensing by the C-terminal domain of complexin. Nat Commun. 2014;5:4955. https://doi.org/10.1038/ncomms5955.

    Article  CAS  PubMed  Google Scholar 

  60. Malsam J, Seiler F, Schollmeier Y, Rusu P, Krause JM, Söllner TH. The carboxy-terminal domain of complexin I stimulates liposome fusion. Proc Natl Acad Sci U S A. 2009;106:2001–6. https://doi.org/10.1073/pnas.0812813106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tokumaru H, Shimizu-Okabe C, Abe T. Direct interaction of SNARE complex binding protein synaphin/complexin with calcium sensor synaptotagmin 1. Brain Cell Biol. 2008;36:173–89. https://doi.org/10.1007/s11068-008-9032-9.

    Article  CAS  PubMed  Google Scholar 

  62. Shata A, Saisu H, Odani S, Abe T. Phosphorylated synaphin/complexin found in the brain exhibits enhanced SNARE complex binding. Biochem Biophys Res Commun. 2007;354:808–13. https://doi.org/10.1016/j.bbrc.2007.01.064.

    Article  CAS  PubMed  Google Scholar 

  63. Hill JJ, Callaghan DA, Ding W, Kelly JF, Chakravarthy BR. Identification of okadaic acid-induced phosphorylation events by a mass spectrometry approach. Biochem Biophys Res Commun. 2006;342:791–9. https://doi.org/10.1016/j.bbrc.2006.02.029.

    Article  CAS  PubMed  Google Scholar 

  64. Maximov A, Tang J, Yang X, Pang ZP, Südhof TC. Complexin controls the force transfer from SNARE complexes to membranes in fusion. Science. 2009;323:516–21. https://doi.org/10.1126/science.1166505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yang X, Kaeser-Woo YJ, Pang ZP, Xu W, Südhof TC. Complexin clamps asynchronous release by blocking a secondary Ca2+ sensor via its accessory alpha helix. Neuron. 2010;68:907–20. https://doi.org/10.1016/j.neuron.2010.11.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kaeser-Woo YJ, Yang X, Südhof TC. C-terminal complexin sequence is selectively required for clam** and priming but not for Ca2+ triggering of synaptic exocytosis. J Neurosci. 2012;32:2877–85. https://doi.org/10.1523/JNEUROSCI.3360-11.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gong J, Lai Y, Li X, Wang M, Leitz J, Hu Y, et al. C-terminal domain of mammalian complexin-1 localizes to highly curved membranes. Proc Natl Acad Sci U S A. 2016;113:E7590–E9. https://doi.org/10.1073/pnas.1609917113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yang X, Cao P, Südhof TC. Deconstructing complexin function in activating and clam** Ca2+-triggered exocytosis by comparing knockout and knockdown phenotypes. Proc Natl Acad Sci U S A. 2013;110:20777–82. https://doi.org/10.1073/pnas.1321367110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu J, Guo T, Wei Y, Liu M, Sui SF. Complexin is able to bind to SNARE core complexes in different assembled states with distinct affinity. Biochem Biophys Res Commun. 2006;347:413–9. https://doi.org/10.1016/j.bbrc.2006.06.085.

    Article  CAS  PubMed  Google Scholar 

  70. Zhou Q, Zhou P, Wang AL, Wu D, Zhao M, Südhof TC, et al. The primed SNARE-complexin-synaptotagmin complex for neuronal exocytosis. Nature. 2017;548:420–5. https://doi.org/10.1038/nature23484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chicka MC, Chapman ER. Concurrent binding of complexin and synaptotagmin to liposome-embedded SNARE complexes. Biochemistry. 2009;48:657–9. https://doi.org/10.1021/bi801962d.

    Article  CAS  PubMed  Google Scholar 

  72. Xu J, Pang ZP, Shin OH, Südhof TC. Synaptotagmin-1 functions as a Ca2+ sensor for spontaneous release. Nat Neurosci. 2009;12:759–66. https://doi.org/10.1038/nn.2320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pang ZP, Melicoff E, Padgett D, Liu Y, Teich AF, Dickey BF, et al. Synaptotagmin-2 is essential for survival and contributes to Ca2+ triggering of neurotransmitter release in central and neuromuscular synapses. J Neurosci. 2006;26:13493–504. https://doi.org/10.1523/JNEUROSCI.3519-06.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Courtney NA, Bao H, Briguglio JS, Chapman ER. Synaptotagmin 1 clamps synaptic vesicle fusion in mammalian neurons independent of complexin. Nat Commun. 2019;10:4076. https://doi.org/10.1038/s41467-019-12015-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Brewer KD, Bacaj T, Cavalli A, Camilloni C, Swarbrick JD, Liu J, et al. Dynamic binding mode of a Synaptotagmin-1-SNARE complex in solution. Nat Struct Mol Biol. 2015;22:555–64. https://doi.org/10.1038/nsmb.3035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sauvola CW, Littleton JT. SNARE regulatory proteins in synaptic vesicle fusion and recycling. Front Mol Neurosci. 2021;14:733138. https://doi.org/10.3389/fnmol.2021.733138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Brose N. For better or for worse: complexins regulate SNARE function and vesicle fusion. Traffic. 2008;9:1403–13. https://doi.org/10.1111/j.1600-0854.2008.00758.x.

    Article  CAS  PubMed  Google Scholar 

  78. Trimbuch T, Rosenmund C. Should I stop or should I go? The role of complexin in neurotransmitter release. Nat Rev Neurosci. 2016;17:118–25. https://doi.org/10.1038/nrn.2015.16.

    Article  CAS  PubMed  Google Scholar 

  79. Mohrmann R, Dhara M, Bruns D. Complexins: small but capable. Cell Mol Life Sci. 2015;72:4221–35. https://doi.org/10.1007/s00018-015-1998-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cao P, Yang X, Südhof TC. Complexin activates exocytosis of distinct secretory vesicles controlled by different synaptotagmins. J Neurosci. 2013;33:1714–27. https://doi.org/10.1523/JNEUROSCI.4087-12.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Glynn D, Drew CJ, Reim K, Brose N, Morton AJ. Profound ataxia in complexin I knockout mice masks a complex phenotype that includes exploratory and habituation deficits. Hum Mol Genet. 2005;14:2369–85. https://doi.org/10.1093/hmg/ddi239.

    Article  CAS  PubMed  Google Scholar 

  82. Glynn D, Sizemore RJ, Morton AJ. Early motor development is abnormal in complexin 1 knockout mice. Neurobiol Dis. 2007;25:483–95. https://doi.org/10.1016/j.nbd.2006.10.011.

    Article  CAS  PubMed  Google Scholar 

  83. Bekkers JM, Stevens CF. Excitatory and inhibitory autaptic currents in isolated hippocampal neurons maintained in cell culture. Proc Natl Acad Sci U S A. 1991;88:7834–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Landis SC. Rat sympathetic neurons and cardiac myocytes develo** in microcultures: correlation of the fine structure of endings with neurotransmitter function in single neurons. Proc Natl Acad Sci U S A. 1976;73:4220–4. https://doi.org/10.1073/pnas.73.11.4220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Furshpan EJ, MacLeish PR, O'Lague PH, Potter DD. Chemical transmission between rat sympathetic neurons and cardiac myocytes develo** in microcultures: evidence for cholinergic, adrenergic, and dual-function neurons. Proc Natl Acad Sci U S A. 1976;73:4225–9. https://doi.org/10.1073/pnas.73.11.4225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Imig C, Min SW, Krinner S, Arancillo M, Rosenmund C, Südhof TC, et al. The morphological and molecular nature of synaptic vesicle priming at presynaptic active zones. Neuron. 2014;84:416–31. https://doi.org/10.1016/j.neuron.2014.10.009.

    Article  CAS  PubMed  Google Scholar 

  87. Schotten S, Meijer M, Walter AM, Huson V, Mamer L, Kalogreades L, et al. Additive effects on the energy barrier for synaptic vesicle fusion cause supralinear effects on the vesicle fusion rate. elife. 2015;4:e05531. https://doi.org/10.7554/eLife.05531.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Lin MY, Rohan JG, Cai H, Reim K, Ko CP, Chow RH. Complexin facilitates exocytosis and synchronizes vesicle release in two secretory model systems. J Physiol. 2013;591:2463–73. https://doi.org/10.1113/jphysiol.2012.244517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Scheuss V, Taschenberger H, Neher E. Kinetics of both synchronous and asynchronous quantal release during trains of action potential-evoked EPSCs at the rat calyx of Held. J Physiol. 2007;585:361–81. https://doi.org/10.1113/jphysiol.2007.140988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Moser T, Grabner CP, Schmitz F. Sensory processing at ribbon synapses in the retina and the Cochlea. Physiol Rev. 2020;100:103–44. https://doi.org/10.1152/physrev.00026.2018.

    Article  CAS  PubMed  Google Scholar 

  91. Mortensen LS, Park SJH, Ke JB, Cooper BH, Zhang L, Imig C, et al. Complexin 3 increases the fidelity of signaling in a retinal circuit by regulating exocytosis at ribbon synapses. Cell Rep. 2016;15:2239–50. https://doi.org/10.1016/j.celrep.2016.05.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dhara M, Yarzagaray A, Schwarz Y, Dutta S, Grabner C, Moghadam PK, et al. Complexin synchronizes primed vesicle exocytosis and regulates fusion pore dynamics. J Cell Biol. 2014;204:1123–40. https://doi.org/10.1083/jcb.201311085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Scholz N, Ehmann N, Sachidanandan D, Imig C, Cooper BH, Jahn O, et al. Complexin cooperates with Bruchpilot to tether synaptic vesicles to the active zone cytomatrix. J Cell Biol. 2019;218:1011–26. https://doi.org/10.1083/jcb.201806155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Babai N, Sendelbeck A, Regus-Leidig H, Fuchs M, Mertins J, Reim K, et al. Functional roles of Complexin 3 and Complexin 4 at mouse photoreceptor ribbon synapses. J Neurosci. 2016;36:6651–67. https://doi.org/10.1523/JNEUROSCI.4335-15.2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Iyer J, Wahlmark CJ, Kuser-Ahnert GA, Kawasaki F. Molecular mechanisms of COMPLEXIN fusion clamp function in synaptic exocytosis revealed in a new Drosophila mutant. Mol Cell Neurosci. 2013;56:244–54. https://doi.org/10.1016/j.mcn.2013.06.002.

    Article  CAS  PubMed  Google Scholar 

  96. Jorquera RA, Huntwork-Rodriguez S, Akbergenova Y, Cho RW, Littleton JT. Complexin controls spontaneous and evoked neurotransmitter release by regulating the timing and properties of synaptotagmin activity. J Neurosci. 2012;32:18234–45. https://doi.org/10.1523/JNEUROSCI.3212-12.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Martin JA, Hu Z, Fenz KM, Fernandez J, Dittman JS. Complexin has opposite effects on two modes of synaptic vesicle fusion. Curr Biol. 2011;21:97–105. https://doi.org/10.1016/j.cub.2010.12.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Neher E. Complexin: does it deserve its name? Neuron. 2010;68:803–6. https://doi.org/10.1016/j.neuron.2010.11.038.

    Article  CAS  PubMed  Google Scholar 

  99. Dittman JS, Kaplan JM. Behavioral impact of neurotransmitter-activated G-protein-coupled receptors: muscarinic and GABAB receptors regulate Caenorhabditis elegans locomotion. J Neurosci. 2008;28:7104–12. https://doi.org/10.1523/JNEUROSCI.0378-08.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Miller KG, Alfonso A, Nguyen M, Crowell JA, Johnson CD, Rand JB. A genetic selection for Caenorhabditis elegans synaptic transmission mutants. Proc Natl Acad Sci U S A. 1996;93:12593–8. https://doi.org/10.1073/pnas.93.22.12593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Verhage M, Sorensen JB. SNAREopathies: diversity in mechanisms and symptoms. Neuron. 2020;107:22–37. https://doi.org/10.1016/j.neuron.2020.05.036.

    Article  CAS  PubMed  Google Scholar 

  102. Melland H, Carr EM, Gordon SL. Disorders of synaptic vesicle fusion machinery. J Neurochem. 2021;157:130–64. https://doi.org/10.1111/jnc.15181.

    Article  CAS  PubMed  Google Scholar 

  103. Brose N. Altered complexin expression in psychiatric and neurological disorders: cause or consequence? Mol Cells. 2008;25:7–19.

    CAS  PubMed  Google Scholar 

  104. Karaca E, Harel T, Pehlivan D, Jhangiani SN, Gambin T, Coban Akdemir Z, et al. Genes that affect brain structure and function identified by rare variant analyses of Mendelian neurologic disease. Neuron. 2015;88:499–513. https://doi.org/10.1016/j.neuron.2015.09.048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Redler S, Strom TM, Wieland T, Cremer K, Engels H, Distelmaier F, et al. Variants in CPLX1 in two families with autosomal-recessive severe infantile myoclonic epilepsy and ID. Eur J Hum Genet. 2017;25:889–93. https://doi.org/10.1038/ejhg.2017.52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lill CM, Roehr JT, McQueen MB, Kavvoura FK, Bagade S, Schjeide BM, et al. Comprehensive research synopsis and systematic meta-analyses in Parkinson's disease genetics: the PDGene database. PLoS Genet. 2012;8:e1002548. https://doi.org/10.1371/journal.pgen.1002548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M, et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease. Nat Genet. 2014;46:989–93. https://doi.org/10.1038/ng.3043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lahut S, Gispert S, Omur O, Depboylu C, Seidel K, Dominguez-Bautista JA, et al. Blood RNA biomarkers in prodromal PARK4 and rapid eye movement sleep behavior disorder show role of complexin 1 loss for risk of Parkinson's disease. Dis Model Mech. 2017;10:619–31. https://doi.org/10.1242/dmm.028035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gispert S, Kurz A, Brehm N, Rau K, Walter M, Riess O, et al. Complexin-1 and Foxp1 expression changes are novel brain effects of alpha-Synuclein pathology. Mol Neurobiol. 2015;52:57–63. https://doi.org/10.1007/s12035-014-8844-0.

    Article  CAS  PubMed  Google Scholar 

  110. Chandra S, Fornai F, Kwon HB, Yazdani U, Atasoy D, Liu X, et al. Double-knockout mice for α- and β-synucleins: effect on synaptic functions. Proc Natl Acad Sci U S A. 2004;101:14966–71. https://doi.org/10.1073/pnas.0406283101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Greten-Harrison B, Polydoro M, Morimoto-Tomita M, Diao L, Williams AM, Nie EH, et al. αβγ-Synuclein triple knockout mice reveal age-dependent neuronal dysfunction. Proc Natl Acad Sci U S A. 2010;107:19573–8. https://doi.org/10.1073/pnas.1005005107.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Begemann M, Grube S, Papiol S, Malzahn D, Krampe H, Ribbe K, et al. Modification of cognitive performance in schizophrenia by complexin 2 gene polymorphisms. Arch Gen Psychiatry. 2010;67:879–88. https://doi.org/10.1001/archgenpsychiatry.2010.107.

    Article  CAS  PubMed  Google Scholar 

  113. Stein A, Jahn R. Complexins living up to their name--new light on their role in exocytosis. Neuron. 2009;64:295–7. https://doi.org/10.1016/j.neuron.2009.10.026.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Noa Lipstein for insightful comments. F.J.L.-M. was a fellow of the Alexander von Humboldt Foundation and is supported by the Serra Húnter Programme and by the Spanish Ministry of Science and Innovation. K.R. acknowledges support by the German Research Foundation (DFG, grant RE 4382/2-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Francisco José López-Murcia , Kerstin Reim or Holger Taschenberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

López-Murcia, F.J., Reim, K., Taschenberger, H. (2023). Complexins: Ubiquitously Expressed Presynaptic Regulators of SNARE-Mediated Synaptic Vesicle Fusion. In: Wang, ZW. (eds) Molecular Mechanisms of Neurotransmitter Release. Advances in Neurobiology, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-031-34229-5_10

Download citation

Publish with us

Policies and ethics

Navigation