Special Features of Remote Sensing Big Data

  • Chapter
  • First Online:
Remote Sensing Big Data

Part of the book series: Springer Remote Sensing/Photogrammetry ((SPRINGERREMO))

  • 351 Accesses

Abstract

This chapter briefly covers the five core dimensions of remote sensing big data, that is, volume, variety, velocity, veracity, and value. There are also other Vs to be explored, like Visualization for effectively high-dimensional visuals and exploration (Huang et al. J Integrat Agric 17:1915–1931, 2018), Volatility for data time-sensitivity (Antunes et al. GIScience Remote Sens 56:536–553, 2019), Validity for the exploration of hidden relationships among elements (Shelestov et al. Front Earth Sci 5 2017), and Viscosity for the complexity (Manogaran and Lopez Int J Biomed Eng Technol 25:182, 2017). Remote sensing big data may cover as many Vs as other big data (Khan et al. Proceedings of the International Conference on Omni-Layer Intelligent Systems - COINS ‘19. ACM Press, Crete, Greece, 2019).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antunes RR, Blaschke T, Tiede D et al (2019) Proof of concept of a novel cloud computing approach for object-based remote sensing data analysis and classification. GIScience Remote Sens 56:536–553. https://doi.org/10.1080/15481603.2018.1538621

    Article  Google Scholar 

  • Brunet P-M, Montmorry A, Frezouls B (2012) Big data challenges, an insight into the Gaia Hadoop solution. In: SpaceOps 2012 conference: Stockholm, Sweden, 11–15 June 2012, Stockholm, Sweden, pp 1263–1274

    Google Scholar 

  • Buchen E (2014) SpaceWorks’ 2014 nano/microsatellite market assessment. In: Proceedings of the small satellite conference, technical session I: private endeavors. Utah State University, Logan, Utah, USA, pp 1–5

    Google Scholar 

  • Buchen E (2015) Small satellite market observations. In: Proceedings of the small satellite conference, technical session VII: opportunities, trends and initiatives. SpaceWorks, Atlanta, pp 1–5

    Google Scholar 

  • Chi M, Plaza A, Benediktsson JA et al (2016) Big data for remote sensing: challenges and opportunities. Proc IEEE 104:2207–2219. https://doi.org/10.1109/JPROC.2016.2598228

    Article  Google Scholar 

  • Nieva de la Hidalga A, Magagna B, Stocker M, et al (2017) The Envri Reference Model (Envri Rm) Version 2.2, 30Th October 2017. Zenodo

    Google Scholar 

  • DelPozzo S, Williams C (2020) SpaceWorks’ 2020 nano/microsatellite market forecast. SpaceWorks Enterprises, Inc. (SEI), Atlanta

    Google Scholar 

  • DelPozzo S, Williams C, Doncaster B (2019) SpaceWorks’ 2019 nano/microsatellite market forecast. SpaceWorks Enterprises, Inc. (SEI), Atlanta

    Google Scholar 

  • DePasquale D, Bradford J (2013) Nano/microsatellite market assessment 2013. Public Release, Revision A, SpaceWorks

    Google Scholar 

  • DePasquale D, Charania A (2011) Nano/microsatellite launch demand assessment 2011. SpaceWorks Commercial, November

    Google Scholar 

  • Depasquale J, Charania AC, Kanamaya H, Matsuda S (2010) Analysis of the earth-to-orbit launch market for nano and microsatellites. In: AIAA SPACE 2010 Conference & Exposition. American Institute of Aeronautics and Astronautics, Anaheim

    Google Scholar 

  • Doncaster B, Shulman J, Bradford J, Olds J (2016) SpaceWorks’ 2016 nano/microsatellite market assessment. In: Proceedings of the small satellite conference, technical session II: launch. Utah State University, Logan, Utah, United States, pp 1–6

    Google Scholar 

  • Doncaster B, Williams C, Shulman J (2017a) SpaceWorks’ 2017 nano/microsatellite market forecast. SpaceWorks Enterprises, Inc. (SEI), Atlanta

    Google Scholar 

  • Doncaster B, Williams C, Shulman J, Olds J (2017b) SpaceWorks’ 2017 nano/microsatellite market assessment. In: Proceedings of the small satellite conference, Swifty session 2. Utah State University, Logan, Utah, United States

    Google Scholar 

  • EOSDIS (2020) System performance and metrics | Earthdata. In: System performance and metrics. https://earthdata.nasa.gov/eosdis/system-performance/. Accessed 16 Jun 2020

  • Hedges M, Hasan A, Blanke T (2007) Curation and preservation of research data in an iRODS data grid. In: Third IEEE international conference on e-science and grid computing (e-Science 2007). IEEE, Bangalore, India, pp 457–464

    Chapter  Google Scholar 

  • Huang Y, Chen Z, Yu T et al (2018) Agricultural remote sensing big data: management and applications. J Integr Agric 17:1915–1931. https://doi.org/10.1016/S2095-3119(17)61859-8

    Article  Google Scholar 

  • Khan N, Naim A, Hussain MR et al (2019) The 51 V’s of big data: survey, technologies, characteristics, opportunities, issues and challenges. In: Proceedings of the international conference on Omni-layer intelligent systems - COINS ’19. ACM Press, Crete, Greece, pp 19–24

    Chapter  Google Scholar 

  • Koo VC, Chan YK, Gobi V et al (2012) A new unmanned aerial vehicle synthetic aperture radar for environmental monitoring. Prog Electromagn Res 122:245–268. https://doi.org/10.2528/PIER11092604

    Article  Google Scholar 

  • Li S, Dragicevic S, Castro FA et al (2016) Geospatial big data handling theory and methods: a review and research challenges. ISPRS J Photogramm Remote Sens 115:119–133. https://doi.org/10.1016/j.isprsjprs.2015.10.012

    Article  Google Scholar 

  • Li Y, Li L, Zha Y (2018) Improved retrieval of aerosol optical depth from POLDER/PARASOL polarization data based on a self-defined aerosol model. Adv Space Res 62:874–883. https://doi.org/10.1016/j.asr.2018.05.034

    Article  Google Scholar 

  • Lindgren T, Ekman J, Backen S (2010) A measurement system for the complex far-field of physically large antenna arrays under noisy conditions utilizing the equivalent electric current method. IEEE Trans Antennas Propag 58:3205–3211. https://doi.org/10.1109/TAP.2010.2055780

    Article  Google Scholar 

  • Liu P (2015) A survey of remote-sensing big data. Front Environ Sci 3. https://doi.org/10.3389/fenvs.2015.00045

  • Liu P, Di L, Du Q, Wang L (2018) Remote sensing big data: theory, methods and applications. Remote Sens 10:711. https://doi.org/10.3390/rs10050711

    Article  Google Scholar 

  • Ma Y, Wu H, Wang L et al (2015) Remote sensing big data computing: challenges and opportunities. Futur Gener Comput Syst 51:47–60. https://doi.org/10.1016/j.future.2014.10.029

    Article  Google Scholar 

  • Manogaran G, Lopez D (2017) A survey of big data architectures and machine learning algorithms in healthcare. Int J Biomed Eng Technol 25:182. https://doi.org/10.1504/IJBET.2017.087722

    Article  Google Scholar 

  • Mattar C, Hernández J, Santamaría-Artigas A et al (2014) A first in-flight absolute calibration of the Chilean Earth Observation Satellite. ISPRS J Photogramm Remote Sens 92:16–25. https://doi.org/10.1016/j.isprsjprs.2014.02.017

    Article  Google Scholar 

  • Murthy K, Shearn M, Smiley BD et al (2014) SkySat-1: very high-resolution imagery from a small satellite. In: Meynart R, Neeck SP, Shimoda H (eds), Proceedings Volume 9241, Sensors, Systems, and Next-Generation Satellites XVIII, SPIE, Amsterdam, p 92411E

    Google Scholar 

  • NIST Big Data Public Working Group (2019) NIST Big Data Interoperability Framework :: volume 2, big data taxonomies version 3. National Institute of Standards and Technology, Gaithersburg

    Google Scholar 

  • NIST Big Data Public Working Group, Definitions and Taxonomies Subgroup (2019a) NIST Big Data Interoperability Framework:: volume 1, definitions version 3. National Institute of Standards and Technology, Gaithersburg

    Google Scholar 

  • NIST Big Data Public Working Group, Definitions and Taxonomies Subgroup (2019b) NIST Big Data Interoperability Framework:: volume 3, use cases and general requirements version 3. National Institute of Standards and Technology, Gaithersburg

    Google Scholar 

  • Ramapriyan H, Brennan J, Walter J, Behnke J (2013) Managing big data: NASA tackles complex data challenges. Earth Imaging J, 2013-10-18. https://eijournal.com/print/articles/managing-big-data

  • Rathore MMU, Paul A, Ahmad A et al (2015) Real-time big data analytical architecture for remote sensing application. IEEE J Select Top Appl Earth Observ Remote Sens 8:4610–4621. https://doi.org/10.1109/JSTARS.2015.2424683

    Article  Google Scholar 

  • Roy DP, Ju J, Kline K et al (2010) Web-enabled Landsat Data (WELD): Landsat ETM+ composited mosaics of the conterminous United States. Remote Sens Environ 114:35–49. https://doi.org/10.1016/j.rse.2009.08.011

    Article  Google Scholar 

  • Safyan M (2020) Planet’s Dove satellite constellation. In: Pelton JN (ed) Handbook of small satellites. Springer International Publishing, Cham, pp 1–17

    Google Scholar 

  • Salazar Loor J, Fdez-Arroyabe P (2019) Aerial and satellite imagery and big data: blending old technologies with new trends. In: Dey N, Bhatt C, Ashour AS (eds) Big data for remote sensing: visualization, analysis and interpretation. Springer International Publishing, Cham, pp 39–59

    Chapter  Google Scholar 

  • Scarsoglio S, Iacobello G, Ridolfi L (2016) Complex networks unveiling spatial patterns in turbulence. Int J Bifurc Chaos 26:1650223. https://doi.org/10.1142/S0218127416502230

    Article  Google Scholar 

  • Schnase JL, Duffy DQ, Tamkin GS et al (2017) MERRA analytic services: meeting the big data challenges of climate science through cloud-enabled climate analytics-as-a-service. Comput Environ Urban Syst 61:198–211. https://doi.org/10.1016/j.compenvurbsys.2013.12.003

    Article  Google Scholar 

  • Shao J, Xu D, Feng C, Chi M (2015) Big data challenges in China Centre for resources satellite data and application. In: 2015 7th workshop on hyperspectral image and signal processing: evolution in remote sensing (WHISPERS). IEEE, Tokyo, Japan, pp 1–4

    Google Scholar 

  • Shelestov A, Lavreniuk M, Kussul N et al (2017) Exploring Google Earth Engine Platform for big data processing: classification of multi-temporal satellite imagery for crop map**. Front Earth Sci 5. https://doi.org/10.3389/feart.2017.00017

  • Shiroma W, Martin L, Akagi J et al (2011) CubeSats: a bright future for nanosatellites. Open Eng 1. https://doi.org/10.2478/s13531-011-0007-8

  • Tyc G, Tulip J, Schulten D et al (2005) The RapidEye mission design. Acta Astronaut 56:213–219. https://doi.org/10.1016/j.actaastro.2004.09.029

    Article  Google Scholar 

  • Williams C, Doncaster B, Shulman J (2018) SpaceWorks’ 2018 nano/microsatellite market forecast. SpaceWorks Enterprises, Inc. (SEI), Atlanta

    Google Scholar 

  • Yang C, Yu M, Hu F et al (2017) Utilizing cloud computing to address big geospatial data challenges. Comput Environ Urban Syst 61:120–128. https://doi.org/10.1016/j.compenvurbsys.2016.10.010

    Article  Google Scholar 

  • Zappala DA, Barreiro M, Masoller C (2020) Map** atmospheric waves and unveiling phase coherent structures in a global surface air temperature reanalysis dataset. Chaos: an interdisciplinary. J Nonlin Sci 30:011103. https://doi.org/10.1063/1.5140620

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Di, L., Yu, E. (2023). Special Features of Remote Sensing Big Data. In: Remote Sensing Big Data. Springer Remote Sensing/Photogrammetry. Springer, Cham. https://doi.org/10.1007/978-3-031-33932-5_3

Download citation

Publish with us

Policies and ethics

Navigation