Numerical Simulation of In-Flight Icing of Rotorcraft

  • Reference work entry
  • First Online:
Handbook of Numerical Simulation of In-Flight Icing
  • 207 Accesses

Abstract

When a rotorcraft operates in highly unsteady aerodynamic conditions in-flight icing simulation techniques based on quasi-steady assumptions are limited in accurately simulating ice accretion. In contrast, the application of an unsteady solver requires impractical computation resources to consider both the periodic motions of rotor blades and the gradual deformation of ice shape. Thus, the prediction of ice accretion on rotorcraft is challenging, considering the effect of unsteadiness while maintaining computation efficiency at a practical level. This chapter reviews the general aspects of rotorcraft icing and introduces up-to-date computational methods, such as quasi-steady numerical methods or actuator surface methods. Subsequently, the chapter introduces a 3-D quasi-unsteady approach, which combines an unsteady framework for airflow, droplet im**ement, and ice accretion with a multi-shot ice shape generation method. Comparative results of the 2-D oscillating airfoil and 3-D rotorcraft icing simulation are presented to demonstrate the effect of aerodynamic unsteadiness on rotorcraft icing. The numerical issues while handling the rotorcraft icing simulation are described, offering a computational approach with greater predictive capabilities for rotorcraft icing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Açıkgöz MB, Aslan AR (2016) Dynamic mesh analyses of helicopter rotor–fuselage flow interaction in forward flight. J Aerosp Eng 29(6)

    Google Scholar 

  • Ahn GB, Jung KY, Myong RS, Shin HB, Habashi WG (2015) Numerical and experimental investigation of ice accretion on rotorcraft engine air intake. AIAA J Aircr 52(3):903–909

    Article  Google Scholar 

  • Aliaga CN, Aubé MS, Baruzzi GS, Habashi WG (2011a) FENSAP-ICE-unsteady: unified in-flight icing simulation methodology for aircraft, rotorcraft, and jet engines. AIAA J Aircr 48(1):119–126

    Article  Google Scholar 

  • Aliaga CN, Aubé MS, Baruzzi GS, Habashi WG (2011b) FENSAP-ICE-Unsteady: unified in-flight icing simulation methodology for aircraft, rotorcraft, and jet engines. AIAA J Aircr 48(1):119–126

    Article  Google Scholar 

  • Bain J, Cajigas J, Sankar L, Flemming RJ, Aubert R (2010) Prediction of rotor blade ice shedding using empirical methods. AIAA paper 2010–7985

    Google Scholar 

  • Bain J, Deresz R, Sankar L, Egolf TA, Flemming R, Kreeger E (2011) Effects of icing on rotary wing loads and surface heat transfer. In: 49th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, Orlando, p 1100

    Google Scholar 

  • Bauchau OA, Kang NK (1993) A multi-body formulation for helicopter structural dynamic analysis. J Am Helicopter Soc 38:3–14

    Article  Google Scholar 

  • Beaugendre H, Morency F, Habashi WG (2003) FENSAP-ICE’s three-dimensional in-flight ice accretion module: ICE3D. AIAA J Aircr 40(2):239–247

    Article  Google Scholar 

  • Beaugendre H, Morency F, Habashi WG (2006) Development of a second generation in-flight icing simulation code. J Fluid Eng 128(2):378–387

    Article  Google Scholar 

  • Bidwell C (2005) Icing calculations for a 3-D, high-lift wing configuration. In: AIAA paper 2005-1244, 43rd AIAA aerospace sciences meeting and exhibit, Reno, January 10–13, 2005

    Google Scholar 

  • Bidwell CS, Potapczuk MG (1993) User’s manual for the NASA Lewis three-dimensional ice accretion code (LEWICE 3-D) (No. NAS 1.15: 105974)

    Google Scholar 

  • Bourgault Y, Boutanios Z, Habashi WG (2000) Three-dimensional Eulerian approach to droplet im**ement simulation using FENSAP-ICE, Part 1: model, algorithm, and validation. AIAA J Aircr 37(1):95–103

    Article  Google Scholar 

  • Bragg M, Gregorek G (1982) Aerodynamic characteristics of airfoils with ice accretions. In: 20th aerospace sciences meeting, p 282

    Google Scholar 

  • Britton R (1992) Development of an analytical method to predict helicopter main rotor performance in icing conditions. In: 30th aerospace sciences meeting and exhibit, p 418

    Google Scholar 

  • Britton RK (1995) Ice accretion characteristics of a model rotor in the NASA Lewis icing research tunnel. In: AHS/SAE international icing symposium ‘95, Montreal, October, 1995

    Google Scholar 

  • Britton R, Bond T (1991) A review of ice accretion data from a model rotor icing test and comparison with theory. In: 29th aerospace sciences meeting, p 661

    Google Scholar 

  • Britton R, Bond T, Flemming RJ (1994) An overview of a model rotor icing test in the NASA Lewis icing research tunnel, NASA TM 106471

    Google Scholar 

  • Buning PG, Jespersen DC, Pulliam TH, Chan WM, Slotnick JP, Krist SE, Renze KJ (1998) OVERFLOW user’s manual, version 1.8b. NASA Langley Research Center, Hampton, VA

    Google Scholar 

  • Cabler SJ (2006) Aircraft ice protection, Federal Aviation Administration AC 20-73A

    Google Scholar 

  • Caradonna FX, Tung C (1981) Experimental and analytical studies of a model helicopter rotor in hover. In European rotorcraft and powered lift aircraft forum (No. A-8332)

    Google Scholar 

  • Cebeci T, Chen H, Alemdaroglu N (1991) Fortified LEWICE with viscous effects. J Aircraft 28:564–571

    Article  Google Scholar 

  • Chen X, Zhao Q, Barakos G (2019) Numerical analysis of aerodynamic characteristics of iced rotor in forward flight. AIAA J 57(4):1523–1537

    Article  Google Scholar 

  • Chen L et al (2020) An experimental investigation on heat transfer performance of rotating anti−/deicing component. Appl Therm Eng 177:115488

    Article  Google Scholar 

  • Drzewiecki S (1920) Théorie générale de l’hélice propulsive. Paris

    Google Scholar 

  • Elliot JW, Althoff SL, Sailey RH (1988) Inflow measurement made with a laser velocimeter on a helicopter model in forward flight-μ 0.15, NASA TM-100542

    Google Scholar 

  • Flemming RJ, Lednicer DA (1985) High-speed ice accretion on rotorcraft airfoils, NASA CR-3910

    Google Scholar 

  • Flemming RJ, Britton RK, Bond TH (1994) Role of wind tunnels and computer codes in the certification and qualification of rotorcraft for flight in forecast icing. NASA TM, 106747

    Google Scholar 

  • Fortin G, Perron J (2009) Spinning rotor blade tests in icing wind tunnel. AIAA paper 2009–4260

    Google Scholar 

  • Fortin G, Ilinca A, Laforte J-L, Brandi V (2004) New roughness computation method and geometric accretion model for airfoil icing. AIAA J Aircr 41(1):119–127

    Article  Google Scholar 

  • Fouladi H, Ozcer IA, Baruzzi GS, Habashi WG (2013a) FENSAP-ICE: 3D icing simulation of helicopter rotor blade in hover. In: SAE 13-ATC-0354, SAE 2013 AeroTech congress and exhibition, Montreal, Canada, September 2013

    Google Scholar 

  • Fouladi H, Habashi WG, Ozcer IA (2013b) Quasi-steady modeling of ice accretion on a helicopter fuselage in forward flight. AIAA J Aircr 50(4):1169–1178

    Article  Google Scholar 

  • Frost W, Chang H, Shieh C, Kimble K (1982) Two-dimensional particle trajectory computer program. Interim Report for Contract NAS3–22448

    Google Scholar 

  • Gessow A (1948) Effect of rotor-blade twist and plan-form taper on helicopter hovering performance (No. NACA-TN-1542)

    Google Scholar 

  • Glauert H (1935) Airplane propellers. In: Aerodynamic theory. Springer, Berlin/Heidelberg, pp 169–360

    Chapter  Google Scholar 

  • Glauert H (1947) The elements of Aerofoil theory. Cambridge University Press

    MATH  Google Scholar 

  • Gustafson FB, Gessow A (1946) Effect of rotor-tip speed on helicopter hovering performance and maximum forward speed. NACA ARR No.L6A16

    Google Scholar 

  • Han Y, Palacios J, Schmitz S (2012) Scaled ice accretion experiments on a rotating wind turbine blade. J Wind Eng Ind Aerodyn 109:55–67

    Article  Google Scholar 

  • Hedde T, Guffond D (1995) ONERA three-dimensional icing model. AIAA J 33(6):1038–1045

    Article  Google Scholar 

  • Hess JL, Smith AMO (1962) Calculation of non-lifting potential flow about arbitrary three-dimensional bodies. Douglas Aircraft Company Report No. ES 40622

    Google Scholar 

  • Kelly D, Habashi WG, Quaranta G, Masarati P, Fossati M (2018) Ice accretion effects on helicopter rotor performance, via multibody and CFD approaches. AIAA J Aircr 55(3):1165–1176

    Article  Google Scholar 

  • Kenyon AR, Brown RE (2009) Wake dynamics and rotor fuselage aerodynamic interactions. J Am Helicopter Soc 54(1):12003

    Article  Google Scholar 

  • Kim T, Oh S, Yee K (2015) Improved actuator surface method for wind turbine application. Renew Energy 76:16–26

    Article  Google Scholar 

  • Korkan KD, Cross EJ Jr, Miller TL (1984) Performance degradation of a model helicopter rotor with a generic ice shape. AIAA J Aircr 21(10):823–830

    Article  Google Scholar 

  • Korkan KD, Dadone L, Shaw RJ (1985) Performance degradation of helicopter rotor in forward flight due to ice. AIAA J Aircr 22(8):713–718

    Article  Google Scholar 

  • Lee JD, Harding R, Palko RL (1983) Documentation of ice shapes on the main rotor of a UH-1H helicopter in hover, NASA CR 168332. Lewis Research Center

    Google Scholar 

  • Leishman GJ (2006) Principles of helicopter aerodynamics. Cambridge University Press

    Google Scholar 

  • Liou SG, Komerath NM, McMahon HM (1989) Velocity measurements of airframe effects on a rotor in low-speed forward flight. AIAA J Aircr 26(12):1131–1136

    Google Scholar 

  • Loughborough DL, Haas EG (1946) Reduction of the adhesion of Ice to De-Icer surfaces. J Aeronaut Sci 13(3):126–134

    Article  Google Scholar 

  • Masarati P, Morandini M, Mantegazza P (2014) An efficient formulation for general-purpose multibody/multiphysics analysis. ASME J Comput Nonlinear Dyn 9(4):1–9

    Google Scholar 

  • Messinger BL (1953) Equilibrium temperature of an unheated icing surface as a function of air speed. J Aeronaut Sci 20(1):29–42

    Article  Google Scholar 

  • Morelli M, Guardone A (2021) A simulation framework for rotorcraft ice accretion and shedding. Aerospace Science and Technology, 107157

    Google Scholar 

  • Morelli M, Zhou BY, Guardone A (2020) Acoustic characterization of glaze and rime ice structures on an oscillating airfoil via fully unsteady simulations. J Am Helicopter Soc 65(4):1–12

    Article  Google Scholar 

  • Morelli M, Bellosta T, Guardone A (2021) Efficient radial basis function mesh deformation methods for aircraft icing. J Comput Appl Math 392:113492

    Article  MathSciNet  MATH  Google Scholar 

  • Myers TG (2001) Extension to the Messinger model for aircraft icing. AIAA J 39:211–218

    Article  Google Scholar 

  • Nam HJ, Kwon OJ (2006) Simulation of unsteady rotor–fuselage aerodynamic interaction using unstructured adaptive meshes. J Am Helicopter Soc 51(2):141–149

    Article  Google Scholar 

  • Narducci R, Kreeger RE (2012) Analysis of a hovering rotor in icing conditions. In: 66th annual forum and technology display (AHS Forum 66) (No. E-17815)

    Google Scholar 

  • Narducci R, Reinert T (2011) Calculations of ice shapes on oscillating airfoils, No. 2011-38-0015. SAE Technical Paper

    Google Scholar 

  • Narducci R, Orr S, Kreeger RE (2012) Application of a high-fidelity icing analysis method to a model-scale rotor in forward flight. In: 67th annual forum and technology display (Forum 67) (No. NASA/TM-2012-217122)

    Google Scholar 

  • Ozcer IA, Baruzzi GS, Reid T, Habashi WG, Fossati M, Croce G (2011) FENSAP-ICE: numerical prediction of ice roughness evolution, and its effects on ice shapes, SAE technical paper, No. 2011-38-0024

    Google Scholar 

  • Park YM, Kwon OJ (2004) Simulation of unsteady rotor flow field using unstructured adaptive sliding meshes. J Am Helicopter Soc 49(4):391–400

    Article  Google Scholar 

  • Prandtl L (1923) Applications of modern hydrodynamics to aeronautics. National Advisory Committee for Aeronautics

    Google Scholar 

  • Rajmohan N, Sankar LN, Makinen SM, Egolf TA, Charles BD (2008) Application of hybrid methodology to rotors in steady and maneuvering flight. In: American helicopter society annual forum 08, Montreal, Canada, April 29–May 1

    Google Scholar 

  • Rajmohan N, Bain J, Nucci M, Sankar L, Flemming R, Egolf TA, Kreeger R (2010) Icing studies for the UH-60A rotor in forward flight. In: American Helicopter Society Aeromechanics Specialists Conference, San Francisco, California, USA

    Google Scholar 

  • Ramsay RR, Hoffman MJ, Gregorek GM (1999) Effects of grit roughness and pitch oscillations on the S809 airfoil, technical reports, NREL

    Google Scholar 

  • Rankine WJM (1865) On the mechanical principles of the action of propellers. Trans Inst Naval Arch 6:13–39

    Google Scholar 

  • Reinert T, Flemming RJ, Narducci R, Aubert RJ (2011) Oscillating airfoil icing tests in the NASA Glenn research center icing research tunnel, No. 2011-38-0016. SAE Technical Paper

    Google Scholar 

  • Ruff GA, Berkowitz BM (1990) User’s manual for the NASA Lewis ice accretion prediction code (LEWICE), NASA-CR-185129

    Google Scholar 

  • Samad A (2021) Modeling effects of external convective heat transfer on rotating blades in anti-icing operations. Diss. École de technologie supérieure

    Google Scholar 

  • Sheng W, Galbraith RAM, Coton FN (2009) On the S809 airfoil’s unsteady aerodynamic characteristics. Wind Energy 12(8):752–767

    Article  Google Scholar 

  • Shin J (1996) Characteristics of surface roughness associated with leading-edge ice accretion. AIAA J Aircr 33(2):316–321

    Article  Google Scholar 

  • Son C, Oh S, Yee K (2017) Ice accretion on helicopter fuselage considering rotor-wake effects. AIAA J Aircr 54(2):500–518

    Article  Google Scholar 

  • Steger JL, Dougherty FC, Benek JA (1983) A chimera grid scheme. In American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED, 5

    Google Scholar 

  • Szilder K, Lozowski E (2010) Numerical simulation of cloud drop im**ement on a helicopter. In: 27th international congress of the aeronautical science, ICAS2010, Nice, France, September 2010

    Google Scholar 

  • Wright WB, Rutkowski A (1999) Validation results for LEWICE 2.0, NASA/CR-1999-208690

    Google Scholar 

  • Wright WB, Gent RW, Guffond D (1997) DRA/NASA/ONERA collaboration on icing research part II-prediction of airfoil ice accretion, NASA CR 202349. Lewis Research Center, pp 1–5

    Google Scholar 

  • ** C, Qi-Jun Z (2017) Numerical simulations for ice accretion on rotors using new three-dimensional icing model. J Aircr 54(4):1428–1442

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seungin Min .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Min, S., Yee, K. (2024). Numerical Simulation of In-Flight Icing of Rotorcraft. In: Habashi, W.G. (eds) Handbook of Numerical Simulation of In-Flight Icing. Springer, Cham. https://doi.org/10.1007/978-3-031-33845-8_10

Download citation

Publish with us

Policies and ethics

Navigation