Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 348))

  • 185 Accesses

Abstract

The description of multidimensional normalization scales is carried out and the general principles of normalization of multidimensional data are formulated. This is the preservation of order and proportions between natural and normalized values on separate scales. General approaches of goal inversion for cost criteria are given. A description of anisotropic scaling in the transition to conditionally general normalized scales is given. The use of non-linear normalization to eliminate the asymmetry of the original data is discussed. Examples of weak and high sensitivity of the decision from the choice of the normalization method are shown, due to the priorities of alternatives according to individual criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 147.69
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zavadskas, E. K., Ustinovichius, L., Turskis, Z., Peldschus, F., & Messing, D. (2002). LEVI 3.0 – Multiple criteria evaluation program for construction solutions. Journal of Civil Engineering and Management, 8(3), 184–191.

    Article  Google Scholar 

  2. Milani, A. S., Shanian, R., Madoliat, R., & Nemes, J. A. (2005). The effect of normalization norms in multiple attribute decision making models: a case study in gear material selection. Structural and multidisciplinary. Optimization, 29(4), 312–318.

    Article  Google Scholar 

  3. Peldschus, F. (2007). The effectiveness of assessment in multiple criteria decisions. International Journal of Management and Decision Making, 8(5–6), 519–526.

    Article  Google Scholar 

  4. Migilinskas, D., & Ustinovichius, L. (2007). Normalisation in the selection of construction alternatives. International Journal of Management and Decision Making, 8(5–6), 623–639.

    Article  Google Scholar 

  5. Zavadskas, E. K., Kaklauskas, A., Turskis, Z., & Tamošaitien, J. (2008). Selection of the effective dwelling house walls by applying attributes values determined at intervals. Journal of Civil Engineering and Management, 14, 85–93.

    Article  Google Scholar 

  6. Ginevičius, R. (2008). Normalization of quantities of various dimensions. Journal of Business Economics and Management, 9(1), 79–86.

    Article  Google Scholar 

  7. Li**, Y., Yuntao, P., & Yishan, W. (2009). Research on data normalization methods in multi-attribute evaluation. Proc. International Conference on Computational Intelligence and Software Engineering, Wuhan, China, 2009, 1–5.

    Google Scholar 

  8. Chakraborty, S., & Yeh, C. H. (2009). A Simulation Comparison of Normalization Procedures for TOPSIS, Proc. of CIE 2009 International Conference on Computers and Industrial Engineering, Troyes (2009), 1815–1820.

    Google Scholar 

  9. Stanujkič, D., Đordevič, B., & Đordevič, M. (2013). Comparative analysis of some prominent MCDM methods: A Case of Ranking Serbian Bank. Serbian Journal of Management, 8(2), 213–241.

    Article  Google Scholar 

  10. Chatterjee, P., & Chakraborty, S. (2014). Investigating the effect of normalization norms in flexible manufacturing system selection using multi-criteria decision-making method. Journal of Engineering Science and Technology Review, 7(3), 141–150.

    Article  Google Scholar 

  11. Çelen, A. (2014). Comparative analysis of normalization procedures in TOPSIS method: With an application to turkish deposit banking market. Informatica, 25(2), 185–208.

    Article  Google Scholar 

  12. Aouadni, S., Rebai, A., & Turskis, Z. (2017). The Meaningful Mixed Data TOPSIS (TOPSIS-MMD) method and its application in supplier selection. Studies in Informatics and Control, 26(3), 353–363. https://doi.org/10.24846/v26i3y201711

    Article  Google Scholar 

  13. Vafaei, N., Ribeiro, R. A., & Camarinha-Matos, L. M. (2018). Data normalization techniques in decision making: Case study with TOPSIS method. International Journal of Information and Decision Sciences, 10(1), 19–38.

    Article  Google Scholar 

  14. Jahan, A., & Edwards, K. L. (2015). A state-of-the-art survey on the influence of normalization techniques in ranking: Improving the materials selection process in engineering design. Materials & Design, 65, 335–342.

    Article  Google Scholar 

  15. Sałabun, W., Wątróbski, J., & Shekhovtsov, A. (2020). Are MCDA methods benchmarkable? A comparative study of TOPSIS, VIKOR, COPRAS, and PROMETHEE II methods. Symmetry, 12, 1549. https://doi.org/10.3390/sym12091549

    Article  Google Scholar 

  16. Zeng, Q. L., Li, D. D., & Yang, Y. B. (2013). VIKOR method with enhanced accuracy for multiple criteria decision making in healthcare management. Journal of Medical Systems, 37, 1–9.

    Article  Google Scholar 

  17. Aytekin, A. (2021). Comparative analysis of normalization techniques in the context of MCDM problems. Decision Making: Applications in Management and Engineering, 4(2), 1–25. https://doi.org/10.31181/dmame210402001a

    Article  Google Scholar 

  18. Harrington, J. (1965). The desirability function. Industrial Quality Control, 21(10), 494–498.

    Google Scholar 

  19. Hwang, C. L., & Yoon, K. (1981). Multiple attributes decision making: Methods and applications. A state-of-the-art survey. Springer.

    Book  Google Scholar 

  20. Maronna, R. A., Martin, R. D., & Yohai, V. J. (2006). Robust statistics: Theory and methods (2nd ed.). Wiley.

    Book  Google Scholar 

  21. Zavadskas, E. K., & Turskis, Z. (2008). A new logarithmic normalization method in games theory. Informatica, 19(2), 303–314.

    Article  Google Scholar 

  22. Skewness. (2022, May 28). In Wikipedia. https://en.wikipedia.org/wiki/Skewness

  23. Brys, G., Hubert, M., & Rousseeuw, P. J. (2005). A robustification of independent component analysis. Journal of Chemometrics, 19, 364–375.

    Article  Google Scholar 

  24. Hubert, M., & Vandervieren, E. (2008). An adjusted boxplot for skewed distributions. Computational Statistics & Data Analysis, 52(12), 5186–5201.

    Article  Google Scholar 

  25. Hwang, C. L., & Masud, A. S. M. (1979). Multiple objective decision making methods and applications, a state of the art survey. Lecture notes in economics and mathematical systems. Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukhametzyanov, I.Z. (2023). Normalization and MCDM Rank Model. In: Normalization of Multidimensional Data for Multi-Criteria Decision Making Problems. International Series in Operations Research & Management Science, vol 348. Springer, Cham. https://doi.org/10.1007/978-3-031-33837-3_3

Download citation

Publish with us

Policies and ethics

Navigation