Clustering of Countries Based on the Associated Social Contact Patterns in Epidemiological Modelling

  • Chapter
  • First Online:
Trends in Biomathematics: Modeling Epidemiological, Neuronal, and Social Dynamics (BIOMAT 2022)

Included in the following conference series:

  • 206 Accesses

Abstract

Mathematical models have been used to understand the spread patterns of infectious diseases such as coronavirus disease 2019 (COVID-19). The transmission component of the models can be modelled in an age-dependent manner via introducing contact matrix for the population, which describes the contact rates between the age groups. Since social contact patterns vary from country to country, we can compare and group the countries using the corresponding contact matrices. In this paper, we present a framework for clustering countries based on their contact matrices with respect to an underlying epidemic model. Since the pipeline is generic and modular, we demonstrate its application in a COVID-19 model from Röst et al. (2020) which gives a hint about which countries can be compared in a pandemic situation, when only non-pharmaceutical interventions are available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, C.C. Reddy, C.K., 2014. Data clustering. Algorithms and applications. Chapman and Hall/CRC Data mining and Knowledge Discovery series, Londra. https://www.taylorfrancis.com/books/edit/10.1201/9781315373515/data-clustering-chandan-reddy-charu-aggarwal

  2. Ajelli, M. and Litvinova, M., 2017. Estimating contact patterns relevant to the spread of infectious diseases in Russia. Journal of theoretical biology, 419, pp.1–7. Available online: https://www.sciencedirect.com/science/article/pii/S0022519317300504

  3. Bishop, C.M. and Nasrabadi, N.M., 2006. Pattern recognition and machine learning (Vol. 4, No. 4, p. 738). New York: springer. https://springer.longhoe.net/book/9780387310732

  4. Carrillo-Larco, R.M. and Castillo-Cara, M., 2020. Using country-level variables to classify countries according to the number of confirmed COVID-19 cases: An unsupervised machine learning approach. Wellcome open research, 5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308996/

  5. Diekmann, O., Heesterbeek, J.A.P. and Roberts, M.G., 2010. The construction of next-generation matrices for compartmental epidemic models. Journal of the royal society interface, 7(47), pp.873–885. https://royalsocietypublishing.org/doi/abs/10.1098/rsif.2009.0386

    Article  Google Scholar 

  6. Fumanelli, L., Ajelli, M., Manfredi, P., Vespignani, A. and Merler, S., 2012. Inferring the structure of social contacts from demographic data in the analysis of infectious diseases spread. https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002673

    Book  Google Scholar 

  7. Grijalva, C.G., Goeyvaerts, N., Verastegui, H., Edwards, K.M., Gil, A.I., Lanata, C.F., Hens, N. and RESPIRA PERU project, 2015. A household-based study of contact networks relevant for the spread of infectious diseases in the highlands of Peru. PloS one, 10(3), p.e0118457. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0118457

  8. Hastie, T., Tibshirani, R., Friedman, J.H. and Friedman, J.H., 2009. The elements of statistical learning: data mining, inference, and prediction (Vol. 2, pp. 1–758). New York: springer. https://springer.longhoe.net/book/10.1007/978-0-387-21606-5

  9. Horby, P., Thai, P.Q., Hens, N., Yen, N.T.T., Mai, L.Q., Thoang, D.D., Linh, N.M., Huong, N.T., Alexander, N., Edmunds, W.J. and Duong, T.N., 2011. Social contact patterns in Vietnam and implications for the control of infectious diseases. PloS one, 6(2), p.e16965. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0016965

  10. Iozzi, F., Trusiano, F., Chinazzi, M., Billari, F.C., Zagheni, E., Merler, S., Ajelli, M., Del Fava, E. and Manfredi, P., 2010. Little Italy: an agent-based approach to the estimation of contact patterns-fitting predicted matrices to serological data. PLoS computational biology, 6(12), p.e1001021. https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1001021

  11. Kiti, M.C., Kinyanjui, T.M., Koech, D.C., Munywoki, P.K., Medley, G.F. and Nokes, D.J., 2014. Quantifying age-related rates of social contact using diaries in a rural coastal population of Kenya. PloS one, 9(8), p.e104786. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0104786

  12. Klepac, P., Kucharski, A.J., Conlan, A.J., Kissler, S., Tang, M.L., Fry, H. and Gog, J.R., 2020. Contacts in context: large-scale setting-specific social mixing matrices from the BBC Pandemic project. MedRxiv. https://covid-19.conacyt.mx/jspui/handle/1000/232

  13. Knipl, D. and Röst, G., 2009. Modelling the strategies for age specific vaccination scheduling during influenza pandemic outbreaks. ar**v preprint ar**v:0912.4662. https://pubmed.ncbi.nlm.nih.gov/21361404/

  14. Kumar, S., Gosain, M., Sharma, H., Swetts, E., Amarchand, R., Kumar, R., Lafond, K.E., Dawood, F.S., Jain, S., Widdowson, M.A. and Read, J.M., 2018. Who interacts with whom? Social mixing insights from a rural population in India. PLoS One, 13(12), p.e0209039. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0209039

  15. Le Polain de Waroux, O., Cohuet, S., Ndazima, D., Kucharski, A.J., Juan-Giner, A., Flasche, S., Tumwesigye, E., Arinaitwe, R., Mwanga-Amumpaire, J., Boum, Y. and Nackers, F., 2018. Characteristics of human encounters and social mixing patterns relevant to infectious diseases spread by close contact: a survey in Southwest Uganda. BMC infectious diseases, 18(1), pp.1–12. Available online: https://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-018-3073-1.

  16. McCarthy, Z., **ao, Y., Scarabel, F., Tang, B., Bragazzi, N.L., Nah, K., Heffernan, J.M., Asgary, A., Murty, V.K., Ogden, N.H. and Wu, J., 2020. Quantifying the shift in social contact patterns in response to non-pharmaceutical interventions. Journal of Mathematics in Industry, 10(1), pp.1–25. https://springer.longhoe.net/article/10.1186/s13362-020-00096-y

    Article  MathSciNet  Google Scholar 

  17. Melegaro, A., Del Fava, E., Poletti, P., Merler, S., Nyamukapa, C., Williams, J., Gregson, S. and Manfredi, P., 2017. Social contact structures and time use patterns in the Manicaland Province of Zimbabwe. PloS one, 12(1), p.e0170459. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0170459

  18. Mongi, C.E., Langi, Y.A.R., Montolalu, C.E.J.C. and Nainggolan, N., 2019, July. Comparison of hierarchical clustering methods (case study: Data on poverty influence in North Sulawesi). In IOP Conference Series: Materials Science and Engineering (Vol. 567, No. 1, p. 012048). IOP Publishing. https://iopscience.iop.org/article/10.1088/1757-899X/567/1/012048/meta

  19. Mossong, J., Hens, N., Jit, M., Beutels, P., Auranen, K., Mikolajczyk, R., Massari, M., Salmaso, S., Tomba, G.S., Wallinga, J. and Heijne, J., 2008. Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS medicine, 5(3), p.e74. https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.0050074&s=09

  20. Nicholson, C., Beattie, L., Beattie, M., Razzaghi, T. and Chen, S., 2022. A machine learning and clustering-based approach for county-level COVID-19 analysis. Plos one, 17(4), p.e0267558. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0267558

  21. Prem, K., Cook, A.R. and Jit, M., 2017. Projecting social contact matrices in 152 countries using contact surveys and demographic data. PLoS computational biology, 13(9), p.e1005697. https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005697

  22. Prem, K., Zandvoort, K.V., Klepac, P., Eggo, R.M., Davies, N.G., Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group, Cook, A.R. and Jit, M., 2021. Projecting contact matrices in 177 geographical regions: an update and comparison with empirical data for the COVID-19 era. PLoS computational biology, 17(7), p.e1009098. Available online: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009098

  23. Read, J.M., Lessler, J., Riley, S., Wang, S., Tan, L.J., Kwok, K.O., Guan, Y., Jiang, C.Q. and Cummings, D.A., 2014. Social mixing patterns in rural and urban areas of southern China. Proceedings of the Royal Society B: Biological Sciences, 281(1785), p.20140268. https://royalsocietypublishing.org/doi/abs/10.1098/rspb.2014.0268

  24. Rizvi, S.A., Umair, M. and Cheema, M.A., 2021. Clustering of countries for COVID-19 cases based on disease prevalence, health systems and environmental indicators. Chaos, Solitons and Fractals, 151, p.111240. Available online: https://www.sciencedirect.com/science/article/pii/S0960077921005944

  25. Röst, G., Bartha, F.A., Bogya, N., Boldog, P., DĂ©nes, A., Ferenci, T., HorvĂ¡th, K.J., JuhĂ¡sz, A., Nagy, C., Tekeli, T. and Vizi, Z., 2020. Early phase of the COVID-19 outbreak in Hungary and post-lockdown scenarios. Viruses, 12(7), p.708. https://www.mdpi.com/1999-4915/12/7/708

  26. Sadeghi, B., Cheung, R.C. and Hanbury, M., 2021. Using hierarchical clustering analysis to evaluate COVID-19 pandemic preparedness and performance in 180 countries in 2020. BMJ open, 11(11), p.e049844. https://bmjopen.bmj.com/content/11/11/e049844.abstract

  27. Wang, D., Shen, H. and Truong, Y., 2016. Efficient dimension reduction for high-dimensional matrix-valued data. Neurocomputing, 190, pp.25–34. Available online: https://www.sciencedirect.com/science/article/pii/S0925231216000084

  28. Weerasuriya, C.K., Harris, R.C., McQuaid, C.F., Gomez, G.B. and White, R.G., 2022. Updating age-specific contact structures to match evolving demography in a dynamic mathematical model of tuberculosis vaccination. PLoS computational biology, 18(4), p.e1010002. https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010002

  29. Zhang, D. and Zhou, Z.H., 2005. (2D) 2PCA: Two-directional two-dimensional PCA for efficient face representation and recognition. Neurocomputing, 69(1–3), pp.224–231. Availabe online: https://www.sciencedirect.com/science/article/pii/S0925231205001785

  30. GitHub repository containing code for the framework proposed in this study https://github.com/zsvizi/clustering-social-patterns-epidemic

Download references

Acknowledgements

This research was supported by project TKP2021-NVA-09 and implemented with the support provided by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-NVA funding scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zsolt Vizi .

Editor information

Editors and Affiliations

Appendices

Appendix 1: First Appendix

1.1 List of the European Countries

We considered the following European countries in the demonstration:

Albania, Armenia, Austria, Belarus, Belgium, Bosnia, Bulgaria, Croatia, Cyprus, Czechia, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Montenegro, Netherlands, North Macedonia, Poland, Portugal, Romania, Russia, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Ukraine, United Kingdom.

Appendix 2: Second Appendix

1.1 The Governing Equations of the Epidemic Model

The governing equations of the disease model described in Sect. 2.2 take the form

$$\displaystyle \begin{aligned} {S^i}'(t)={} & -\beta_0 \frac{S^i(t)}{N_i}\cdot\sum_{k=1}^{16} M^{(k,i)}\left[I_{p}^{k}(t) + \mathrm{inf}_a \sum_{j=1}^3 I_{a,j}^{k}(t) + \sum_{j=1}^3 I_{s,j}^{k}(t)\right] \\ {L_1^i}'(t)={} & \beta_0 \frac{S^i(t)}{N_i}\cdot\sum_{k=1}^{16} M^{(k,i)}\left[I_{p}^{k}(t) + \mathrm{inf}_a \sum_{j=1}^3 I_{a,j}^{k}(t) + \sum_{j=1}^3 I_{s,j}^{k}(t)\right] - 2 \alpha_l L^i_1(t) \\ {L_2^i}'(t)={} & 2 \alpha_l L_1^i(t) - 2\alpha_l L_2^i(t),\\ {I_a^i}'(t)={} & 2 \alpha_l L_{2}^{i}(t) - \alpha_{p} I_{p}^{i} (t)\\ {I_{a,1}^i}'(t)={} & p^{i} \alpha_{p} {I}_{p}^{i} (t) - 3 \gamma_{a} I_{a,1}^{i}(t)\\ {I_{a,2}^i}'(t)={} & 3\gamma_{a} I_{a,1}^{i}(t)- 3\gamma_{a} I_{a,2}^{i}(t)\\ {I_{a,3}^i}'(t)={} & 3\gamma_{a} I_{a,2}^{i}(t)- 3\gamma_{a} I_{a,3}^{i}(t)\\ {I_{s,1}^i}'(t)= {}& (1 - p^i) \alpha_{p} I_{p}^{i} - 3 \gamma_{s} I_{s,1}^i(t)\\ {I_{s,2}^i}'(t)= {} & 3 \gamma_{s} I_{s,1}^i(t) - 3 \gamma_{s} I_{s,2}^i(t)\\ {I_{s,3}^i}'(t)= {} & 3 \gamma_{s} I_{s,2}^i(t) - 3 \gamma_{s} I_{s,3}^i(t)\\ {I_h^i}'(t)={} & h^i (1 - \xi^i) 3 \gamma_{s} I_{s,3}^i(t) - \gamma_h I_h^i(t)\\ {I_c^i}'(t)={} & h^i \xi^i 3 \gamma_{s} I_{s,3}^i(t)-\gamma_c I_c^i(t)\\ {I_{\mathrm{cr}}^i}'(t)={} & (1 - \mu^{i}) \gamma_{c} I_{c}^{i} (t) -\gamma_{\mathrm{cr}} I_{\mathrm{cr}}^{i} (t)\\ {R^i}'(t)={} & 3 \gamma_{a} I_{a,3}^{i} (t) + (1- h^{i}) 3 \gamma_{s} I_{s,3}^{i} (t) + \gamma_{h} I_{h}^{i} (t) + \gamma_{\mathrm{cr}} I_{\mathrm{cr}}^{i} (t)\\ {D^i}'(t)={} & \mu^i \gamma_c I_c^i(t), {} \end{aligned} $$
(2)

where the index \(i \in {1, . . . ,16}\) represents the corresponding age group. As it can be seen, the model contains age-dependent parameters (probabilities p, h, \(\xi \), \(\mu \), for which upper index shows the age group) and age-independent ones (fraction \(\mathrm {inf}_a\) and transition parameters \(\alpha \) and \(\gamma _X\), where \(X\in \{a,s,h,c,\mathrm {cr}\}\)). Notation here is aligned with the parameter file located in the repository of the framework. Here \(\mathrm {inf}_a\) denotes the relative infectiousness of \(I_a\) compared to \(I_s\), for more details about the other parameters and the methodology for parametrization, see [25].

1.2 Next-Generation Matrix

To calculate \(\mathcal {R}_{0}\) for the previously mentioned epidemic model, we consider the infectious subsystem for

$$\displaystyle \begin{aligned} {L_{1}^{i}}(t), {L_{2}^{i}}(t), {I_{p}^{i}}(t), {I_{j}^{i}}(t),\end{aligned}$$

with \(j\in \boldsymbol \{a, s\} \times \{1,2,3\}, i \in \{1,...,16\}\), thus

$$\displaystyle \begin{aligned} X(t) &= \begin{bmatrix} L_{1}^{i}(t) & L_{2}^{i}(t) & I_{p}^{i}(t) & I_{a, 1}^{i}(t) & I_{a, 2}^{i}(t) & I_{a, 3}^{i}(t) & I_{s, 1}^{i}(t) & I_{s, 2}^{i}(t)& I_{s, 3}^{i}(t) \end{bmatrix}^\top \end{aligned} $$

and linearization gives

$$\displaystyle \begin{aligned} {X^\prime}(t) = (\beta_0 \cdot T + \Sigma) \cdot X(t),\end{aligned}$$

where \(T \in \mathbb {R}^{144 \times 144}\) is the transmission part and \(\Sigma \in \mathbb {R}^{144 \times 144}\) represents the transition mechanisms in the model. The matrix \(\Sigma \) is a block-diagonal matrix, where blocks have size of \(9\times 9\) containing transition parameters related to the linear terms of the system. On the other hand, the transmission matrix T is partitioned into blocks of size \(9\times 9\), and each of this blocks have nonzero elements only in their first rows, since transmission between individuals affects only the classes \(L_1^i, i\in \{1,2,\dots ,16\}\), and these nonzero elements are related to the corresponding elements of the contact matrix and the transmission-related parameter \(\mathrm {inf}_a\). The Next-Generation Matrix (shortly NGM) can be calculated as

$$\displaystyle \begin{aligned} \mathrm{NGM} = -\beta_0\cdot T \Sigma^{-1},\end{aligned}$$

and the basic reproduction number is the dominant eigenvalue of the NGM, i.e.,

$$\displaystyle \begin{aligned} \mathcal{R}_0 = \beta_0 \cdot \rho(-T \Sigma^{-1}).\end{aligned}$$

On one hand, the model parameters are the same for all countries in the paper; on the other hand, this calculation has to be executed for each countries separately, since social contact matrices (thus T matrices) are different. For more details about NGM method, see [5].

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Korir, E.K., Vizi, Z. (2023). Clustering of Countries Based on the Associated Social Contact Patterns in Epidemiological Modelling. In: Mondaini, R.P. (eds) Trends in Biomathematics: Modeling Epidemiological, Neuronal, and Social Dynamics. BIOMAT 2022. Springer, Cham. https://doi.org/10.1007/978-3-031-33050-6_15

Download citation

Publish with us

Policies and ethics

Navigation