Sensors and/or Transducers in Human Locomotor System

  • Chapter
  • First Online:
The Human Locomotor System

Abstract

This chapter introduces some sensors/transducers currently available for the monitoring of human dynamic behavior in space. There exist some technological initiatives towards the production of sensors to enable the acquisition of data from the human locomotor system. Some of these initiatives include wearable chemical sensors whose principle focuses on non-invasive chemical analysis of biofluids including sweat, tears, saliva, or interstitial fluid. These types of biosensors enable continuous and real-time monitoring of the relevant biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Camomilla, V., Cappazzo, A., & Vannozzi, G. (2017). Three-dimensional reconstruction of the human skeleton in motion. In B. Muller & S. I. Wolf (Eds.), Handbook of human motion. Springer. https://doi.org/10.1007/978-3-319-30808-1_146-1

    Chapter  Google Scholar 

  2. Alaqtash, M. M. S. (2012). The application of fuzzy granular computing for the analysis of human dynamic behavior in 3D space. Ph.D. dissertation, department of electrical and computer engineering, University of Texas at El Paso.

    Google Scholar 

  3. Yu, H. (2010). Categorization of functional impairments in human locomotion using the methods of the fusion of multiple sensors and computational intelligence. Dissertation at the Department of Electrical and Computer Engineering, University of Texas at El Paso.

    Google Scholar 

  4. MacDonald, C. (2009). Dynamic modeling of human gait and motor adaptation: Towards the simulation of ankle impairments. Dissertation at the Department of Electrical and Computer Engineering, University of Texas at El Paso.

    Google Scholar 

  5. Uhlenbrock, D. (1999). An advanced biomedical gait training machine for the rehabilitation of non-ambulatory stroke patients based on computer-aided human motion analysis. PhD Dissertation, School of Science and Technology, Teesside University.

    Google Scholar 

  6. Yoshida, Y., Nishimura, T., & Jokinen, K. (2018). Biomechanics for understanding movement in daily activities. AIRC AIST Waterfront, Aomi, Koto-ku, Tokyo Japan.

    Google Scholar 

  7. Hood, S., McBain, T., Portas, M., & Spears, I. (2012 July). Measurement in sports biomechanics. Themed Paper in Measurement and Control, 45/6, 182.

    Article  Google Scholar 

  8. Aritan, S. (2015). Biomechanical measurement methods to analyze the mechanisms of Sport Injuries. In M. N. Doral & J. Karlsson (Eds.), Sports Injuries. Springer. https://doi.org/10.1007/978-3-642-36569-0_235

    Chapter  Google Scholar 

  9. Guk, K., Han, G., Lim, J., Jeong, K., Kang, T., Lim, E.-K., & Jung, J. (2019). Evolution of wearable devices with real-time disease monitoring for personalized healthcare. Nanomaterials, 9, 813.

    Article  Google Scholar 

  10. Sharma, A., Badea, M., Tiwari, S., & Marty, J. L. (2021). Wearable biosensors: An alternative and practical approach in healthcase monitoring. Molecules, 26, 748.

    Article  Google Scholar 

  11. Sarkodie-Gyan, T., Yu, H., Bogale, M., Hernandez, N. V., & Pirela-Cruz, M. (2017). Application of multiple sensor data fusion for the analysis of human dynamic behavior in space: Assessment and evaluation of mobility-related functional impairments. Journal of Biomedical Science and Engineering, 10, 182–203.

    Article  Google Scholar 

  12. Sarkodie-Gyan, T., Yu, H., Murad, A., Abdelgawad, A., Spier, E., & Brower, R. (2011). Measurement of functional impairments in human locomotion using pattern analysis. Elsevier Journal of Measurement, 44.

    Google Scholar 

  13. Zawawi, M. A., O’Keeffe, S., & Lewis, E. (2013). Plastic optical fibre sensor for spine bending monitoring. Sensors & Their Applications XVII, Journal of Physics: Conference Series, 450(2013), 012004.

    Google Scholar 

  14. Lee, B. (2003). Review of the present status of optical fibre sensors. Optical Fiber Technology, 9(2), 57–79.

    Article  MathSciNet  Google Scholar 

  15. Ziemann, O., Krauser, J., Zamzow, P. E., & Daum, W. (2008). Optical fibers: Fundamentals of optical fibers. In POF handbook: Optical short range transmission systems (2nd ed., p. 47). Springer. ISBN 978-3-540-76628-5.

    Google Scholar 

  16. Xu-dong, W., & Wolfbeis, O. S. (2015). Fiber-optic chemical sensors and biosensors (2013–2015). ACS Publications.

    Google Scholar 

  17. Miah, K., & Potter, D. K. (2017). A review of hybrid fiber-optic distributed simultaneous vibration and temperature sensing technology and its geophysical applications. MDPI Sensors, 17, 2511.

    Article  Google Scholar 

  18. Nilsson, L., Johansson, A., & Kalman, S. (2003). Respiratory variations in the reflection mode photoplethysmographic signal. Relationships to peripheral venous pressure. Medical & Biological Engineering & Computing, 41(3), 249–254. ISSN 0140–0118, 1741–0444, doi:nbibinfofdoigf10. 1007/BF02348428g. http://springer.longhoe.net/10.1007/BF02348428

    Article  Google Scholar 

  19. McAdams, E., Krupaviciute, A., Gehin, C., Grenier, E., Massot, B., Dittmar, A., Rubel, P., & Fayn, J. (2011). Wearable sensor systems: The challenges. In Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE, 30 -Sept. 3 2011, pp. 3648–3651.

    Google Scholar 

  20. de Pinho Ferreira, N., Gehin, C., & Massot, B. (2020). A review of methods for non-invasive heart rate measurement on wrist. Innovation and Research in BioMedical Engineering. Elsevier Masson, 2020.

    Google Scholar 

  21. Nitzan, M., Babchenko, A., Khanokh, B., & Taitelbaum, H. (2000). Measurement of oxygen saturation in venous blood by dynamic near infrared spectroscopy. Journal of Biomedical Optics, 5(2),155. ISSN 10833668,doi:nbibinfofdoigf10.1117/1.429982g. http://biomedicaloptics.spiedigitallibrary.org/article.aspx?doi=10.1117/1.429982

  22. Wang, C., Li, Z., & Wei, X. (2012). Monitoring heart and respiratory rates at radial artery based on PPG. Optik, 124(19), 3954–3956. ISSN 00304026, doi:nbibinfofdoigf10.1016/j.ijleo.2012.11.044g, URL https://linkinghub.elsevier.com/retrieve/pii/S0030402613000120

  23. Ullah, S., Khan, P., Ullah, N., Saleem, S., Higgins, H., & Kwak, K. S. (2010). A review of wireless body area networks for medical applications. Ar**v e-prints 2(8), 797–803.

    Google Scholar 

  24. Boundless. (2016, May 26). Structures of the heart. Boundless Biology Boundless.

    Google Scholar 

  25. Richard, E. K. (2017). Anatomy and function of the coronary arteries. Johns Hopkins Health Library. Available at. http://www.cvphysiology.com/Blood%20flow/BF001

  26. Chu, M. X., Shirai, T., Takahashi, D., Arakawa, T., Kudo, H., Sano, K., Sawada, S., Yano, K., Iwasaki, Y., Akiyoshi, K., Mochizuki, M., & Mitsubayashi, K. (2011). Biomedl Microdev, 13, 603–611.

    Article  Google Scholar 

  27. Sen, D. K., & Sarin, G. S. (1980). British Journal of Ophthalmology, 64, 693–695.

    Article  Google Scholar 

  28. Chu, M. X., Miyajima, K., Takahashi, D., Arakawa, T., Sano, K., Sawada, S., Kudo, H., Iwasaki, Y., Akiyoshi, K., Mochizuki, M., & Mitsubayashi, K. (2011). Talanta, 83, 960–965.

    Article  Google Scholar 

  29. Mandel, I. D. (1990). Journal of Oral Pathology & Medicine, 19, 119–125.

    Article  Google Scholar 

  30. Streckfus, C. F., & Bigler, L. R. (2002). Oral Diseases, 8, 69–76.

    Article  Google Scholar 

  31. Kaufman, E., & Lamster, I. B. (2002). Critical Reviews in Oral Biology & Medicine, 13, 197–212.

    Article  Google Scholar 

  32. Aguirre, A., Testaweintraub, L. A., Banderas, J. A., Haraszthy, G. G., Reddy, M. S., & Levine, M. J. (1993). Critical Reviews in Oral Biology & Medicine, 4, 343–350.

    Article  Google Scholar 

  33. Chiappin, S., Antonelli, G., Gatti, R., & De Palo, E. F. (2007). Clinica Chimica Acta, 383, 30–40.

    Article  Google Scholar 

  34. Campuzano, S., Yanez-Sedeno, P., & **arron, J. M. (2017). Trac-Trends in Analytical Chemistry, 86, 14–24.

    Article  Google Scholar 

  35. Malon, R. S. P., Sadir, S., Balakrishnan, M., & Corcoles, E. P. (2014). Biomed Research International. Artn 962903 https://doi.org/10.1155/2014/962903.

  36. Heikenfeld, J. (2016). Electroanalysis, 28, 1242–1249.

    Article  Google Scholar 

  37. Alaqtash, M., Yu, H., Brower, R., Abdelgawad, A., & Sarkodie-Gyan, T. (2011). Application of wearable sensors for human gait analysis using fuzzy computational algorithm. Elsevier Journal of Engineering Applications of Artificial Intelligence, 24, 1018.

    Article  Google Scholar 

  38. Sarkodie-Gyan, T. (2005). Neurorehabilitation devices: Engineering design, measurement, and control. McGraw-Hill Company. ISBN: 0071448306.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarkodie-Gyan, T., Yu, H. (2023). Sensors and/or Transducers in Human Locomotor System. In: The Human Locomotor System. Springer, Cham. https://doi.org/10.1007/978-3-031-32781-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32781-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32780-3

  • Online ISBN: 978-3-031-32781-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation