Hippocampus Shape Analysis via Skeletal Models and Kernel Smoothing

  • Chapter
  • First Online:
Statistical Methods at the Forefront of Biomedical Advances

Abstract

Skeletal representations (s-reps) have been successfully adopted to parsimoniously parametrize the shape of three-dimensional objects and have been particularly employed in analyzing hippocampus shape variation. Within this context, we provide a fully nonparametric dimension-reduction tool based on kernel smoothing for determining the main source of variability of hippocampus shapes parametrized by s-reps. The methodology introduces the so-called density ridges for data on the polysphere and involves addressing high-dimensional computational challenges. For the analyzed dataset, our model-free indexing of shape variability reveals that the spokes defining the sharpness of the elongated extremes of hippocampi concentrate the most variation among subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 179.34
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Csernansky J.G., Wang L., Swank J., Miller J.P., Gado M., Mckeel D., Miller M.I., Morris J.C.: Preclinical detection of Alzheimer’s disease: hippocampal shape and volume predict dementia onset in the elderly. Neuroimage 25(3), 783 (2005) doi: https://doi.org/j.neuroimage.2004.12.036

  2. Dryden I.L., Mardia K.V.: Statistical Shape Analysis, with Applications in R. Wiley Series in Probability and Statistics. Wiley, Chichester (2016) doi: https://doi.org/10.1002/9781119072492

  3. Liu Z., Hong J., Vicory J., Damon J.N., Pizer S.M.: Fitting unbranching skeletal structures to objects. Med. Image Anal. 70, 102020 (2021) doi: https://doi.org/10.1016/j.media.2021.102020

  4. Pizer S.M., Marron J.S.: In Zheng, G., Li, S., Székely, G. (eds.) Statistical Shape and Deformation Analysis, pp. 137–164. Academic Press, London (2017) doi: https://doi.org/10.1016/B978-0-12-810493-4.00007-9

  5. Pizer S.M., Jung S., Goswami D., Vicory J., Zhao X., Chaudhuri R., Damon J.N., Huckemann S., Marron J.: Nested sphere statistics of skeletal models. In Breuß, M., Bruckstein, A., Maragos, P. (eds) Innovations for Shape Analysis, pp. 93–115. Springer, Heidelberg (2013) doi: https://doi.org/10.1007/978-3-642-34141-0_5

  6. Marron J.S., Dryden I.L.: Object Oriented Data Analysis, Monographs on Statistics and Applied Probability, vol. 169. CRC Press, Boca Raton (2021) doi: https://doi.org/10.1201/9781351189675

  7. Hong J., Vicory J., Schulz J., Styner M., Marron J.S., Pizer S.M.: Non-Euclidean classification of medically imaged objects via s-reps. Med. Image Anal. 31, 37 (2016) doi: https://doi.org/10.1016/j.media.2016.01.007

  8. Schulz J., Pizer S.M., Marron J., Godtliebsen F.: Non-linear hypothesis testing of geometric object properties of shapes applied to hippocampi. J. Math. Imaging Vis. 54(1), 15 (2016) doi: https://doi.org/10.1007/s10851-015-0587-7

  9. Pizer S.M., Hong J., Vicory J., Liu Z., Marron J.S., Choi H.Y., Damon J., Jung S., Paniagua B., Schulz J., Sharma A., Tu L., Wang J.: Object shape representation via skeletal models (s-reps) and statistical analysis. In Pennec, X., Sommer, S., Fletcher, T. (eds.) Riemannian Geometric Statistics in Medical Image Analysis, pp. 233–271. Elsevier (2020) doi: https://doi.org/10.1016/B978-0-12-814725-2.00014-5

  10. Siddiqi K., Pizer S.: Medial Representations: Mathematics, Algorithms and Applications, Computational Imaging and Vision, vol. 37. Springer Science & Business Media (2008) doi: https://doi.org/10.1007/978-1-4020-8658-8

  11. Pizer S., Marron J., Damon J.N., Vicory J., Krishna A., Liu Z., Taheri M.: Skeletons, object shape, statistics. Front. Comput. Sci. 4, 842637 (2022) doi: https://doi.org/10.3389/fcomp.2022.842637

  12. Pizer S.M., Hong J., Vicory J., Liu Z., Marron J.S., Choi H.Y., Damon J., Jung S., Paniagua B., Schulz J., Sharma A., Tu L., Wang J.: Object shape representation via skeletal models (s-reps) and statistical analysis. In Pennec, X., Sommer, S., Fletcher, T. (eds.) Riemannian Geometric Statistics in Medical Image Analysis, pp. 233–271. Academic Press, London (2020) doi: https://doi.org/10.1016/B978-0-12-814725-2.00014-5

  13. Jung S., Foskey M., Marron J.S.: Principal arc analysis on direct product manifolds. Ann. Appl. Stat. 5(1), 578 (2011) doi: https://doi.org/10.1214/10-aoas370

  14. Jung S., Dryden I.L., Marron J.S.: Analysis of principal nested spheres. Biometrika 99(3), 551 (2012) doi: https://doi.org/10.1093/biomet/ass022

  15. Genovese C.R., Perone-Pacifico M., Verdinelli I., Wasserman L.: Nonparametric ridge estimation. Ann. Stat. 42(4), 1511 (2014) doi: https://doi.org/10.1214/14-AOS1218

  16. Eltzner B.: Geometrical smeariness – a new phenomenon of Fréchet means. Bernoulli 28(1), 239 (2022) doi: https://doi.org/10.3150/21-BEJ1340

  17. Friedman J., Hastie T., Tibshirani R.: Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33(1), 1 (2010) doi: https://doi.org/10.18637/jss.v033.i01

  18. Chacón J.E., Duong T.: Multivariate Kernel Smoothing and its Applications, Monographs on Statistics and Applied Probability, vol. 160. CRC Press, Boca Raton (2018) doi: https://doi.org/10.1201/9780429485572

  19. Lehoucq R.B., Sorensen D.C., Yang C.: ARPACK Users’ Guide. Society for Industrial and Applied Mathematics. Philadelphia (1998) doi: https://doi.org/10.1137/1.9780898719628

  20. Sanderson C., Curtin R.: A user-friendly hybrid sparse matrix class in C++. In Davenport, J.H., Kauers, M., Labahn, G., Urban, J. (eds.) Mathematical Software – ICMS, pp. 422–430. Springer International Publishing, Cham (2018) doi: https://doi.org/10.1007/978-3-319-96418-8_50

  21. García-Portugués E.: Exact risk improvement of bandwidth selectors for kernel density estimation with directional data. Electron. J. Stat. 7, 1655 (2013) doi: https://doi.org/10.1214/13-ejs821

  22. Silverman B.W.: Density Estimation for Statistics and Data Analysis. Monographs on Statistics and Applied Probability. Chapman & Hall, London (1986) doi: https://doi.org/10.1007/978-1-4899-3324-9

  23. Zoubouloglou P., García-Portugués E., Marron J.S.: Scaled torus principal component analysis. J. Comput. Graph. Stat. (to appear) (2022) doi: https://doi.org/10.1080/10618600.2022.2119985

  24. Borg I., Groenen P.J.: Modern Multidimensional Scaling: Theory and Applications. Springer Series in Statistics. Springer Science & Business Media (2005) doi: https://doi.org/10.1007/0-387-28981-X

  25. de Leeuw J., Mair P.: Multidimensional scaling using majorization: SMACOF in R. J. Stat. Softw. 31(3), 1 (2009) doi: https://doi.org/10.18637/jss.v031.i03

  26. García-Portugués E., Paindaveine D., Verdebout T.: On optimal tests for rotational symmetry against new classes of hyperspherical distributions. J. Am. Stat. Assoc. 115(532), 1873 (2020) doi: https://doi.org/10.1080/01621459.2019.1665527

  27. García-Portugués E., Paindaveine D., Verdebout T.: rotasym: Tests for Rotational Symmetry on the Hypersphere (2022). https://CRAN.R-project.org/package=rotasym. R package version 1.1.4

  28. Benjamini Y., Yekutieli D.: The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 29(4), 1165 (2001) doi: https://doi.org/10.1214/aos/1013699998

  29. Lafarge T., Pateiro-López B.: Implementation of the 3D Alpha-Shape for the Reconstruction of 3D Sets from a Point Cloud (2020). https://CRAN.R-project.org/package=alphashape3d. R package version 1.3.1

Download references

Acknowledgements

Both authors acknowledge support from grant PID2021-124051NB-I00, funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. The authors greatly acknowledge Prof. Stephen M. Pizer and Dr. Zhiyuan Liu (University of North Carolina at Chapel Hill) for kindly providing the analyzed s-reps hippocampi data. Comments by the editor and a referee are appreciated.

Proofs

Proof (Proposition 1)

For \(\bar {\mathbf {x}}=({\mathbf {x}}_1^{\prime }/\|{\mathbf {x}}_1\|,\ldots ,{\mathbf {x}}_r^{\prime }/\|{\mathbf {x}}_r\|)'=:(\bar {\mathbf {x}}_1^{\prime },\ldots ,\bar {\mathbf {x}}_r^{\prime })^{\prime }\in (\mathbb {S}^{d})^r\),

$$\displaystyle \begin{aligned} \frac{\partial \bar{\mathbf{x}}_j}{\partial x_{ij}}=\|{\mathbf{x}}_j\|{}^{-3}\Big(\|{\mathbf{x}}_j\|{}^2{\mathbf{e}}_{i}-x_{ij}{\mathbf{x}}_j\Big)\quad \text{and}\quad \frac{\partial \bar{\mathbf{x}}_j}{\partial x_{ik}}=0, \end{aligned} $$

where \({\mathbf {e}}_i\) is the ith canonical vector of \(\mathbb {R}^{d+1}\), \(i=1,\ldots ,d+1\), and \(j,k=1,\ldots ,r\), \(j\neq k\). It now follows that, for \(\mathbf {x}\in (\mathbb {R}^{d+1})^r\),

$$\displaystyle \begin{aligned} \frac{\partial }{\partial x_{ij}}f(\bar{\mathbf{x}})=\|{\mathbf{x}}_j\|{}^{-3}\boldsymbol\nabla_j f(\bar{\mathbf{x}})\Big(\|{\mathbf{x}}_j\|{}^2{\mathbf{e}}_{i}-x_{ij}{\mathbf{x}}_j\Big),~~j=1,\ldots,r,~~i=1,\ldots,d+1. \end{aligned} $$

Hence, for \(\mathbf {x} \in (\mathbb {S}^{d})^r\),

$$\displaystyle \begin{aligned} \boldsymbol\nabla_j \bar{f}(\mathbf{x})= \boldsymbol\nabla_j f(\mathbf{x})({\mathbf{I}}_{d+1}-{\mathbf{x}}_j{\mathbf{x}}_j^{\prime}), \quad j=1,\ldots,r. \end{aligned} $$

To obtain the Hessian of \(\bar {f}\), we first compute the entries of \(\boldsymbol {\mathcal {H}}_{jj} \bar {f}(\mathbf {x})\) for \(\mathbf {x} \in (\mathbb {R}^{d+1})^r\) and \(j=1,\ldots ,r\):

$$\displaystyle \begin{aligned} \frac{\partial^2 }{\partial x_{pj}\partial x_{qj}}&\bar{f}(\mathbf{x})\\ =&\;\frac{\partial }{\partial x_{pj}}\left(\|{\mathbf{x}}_j\|{}^{-1}\frac{\partial }{\partial x_{qj}}f(\bar{\mathbf{x}})-\|{\mathbf{x}}_j\|{}^{-3}\sum_{l=1}^{d+1}\frac{\partial }{\partial x_{lj}}f(\bar{\mathbf{x}})x_{lj}x_{qj}\right)\\ =&\;\left(\frac{\partial }{\partial x_{pj}}\|{\mathbf{x}}_j\|{}^{-1}\right)\frac{\partial }{\partial x_{qj}}f(\bar{\mathbf{x}})+\|{\mathbf{x}}_j\|{}^{-1}\frac{\partial }{\partial x_{pj}}\left(\frac{\partial }{\partial x_{qj}}f(\bar{\mathbf{x}})\right)\\ &-\left(\frac{\partial }{\partial x_{pj}}\|{\mathbf{x}}_j\|{}^{-3}\right)\sum_{l=1}^{d+1}\frac{\partial }{\partial x_{lj}}f(\bar{\mathbf{x}})x_{lj}x_{qj}\\ &-\|{\mathbf{x}}_j\|{}^{-3}\sum_{l=1}^{d+1}\left[\frac{\partial }{\partial x_{pj}}\left(\frac{\partial }{\partial x_{lj}}f(\bar{\mathbf{x}})\right)x_{lj}x_{qj}+\frac{\partial }{\partial x_{lj}}f(\bar{\mathbf{x}})\frac{\partial }{\partial x_{pj}}(x_{lj}x_{qj})\right]\\ =&\;\|{\mathbf{x}}_j\|{}^{-3}\Bigg\{-x_{pj}\frac{\partial }{\partial x_{qj}}f(\bar{\mathbf{x}})-x_{qj}\frac{\partial }{\partial x_{pj}}f(\bar{\mathbf{x}})\\ &+\left(3\|{\mathbf{x}}_j\|{}^{-2}x_{pj}x_{qj}-\delta_{pq}\right)\sum_{l=1}^{d+1}x_{lj}\frac{\partial }{\partial x_{lj}}f(\bar{\mathbf{x}})+\|{\mathbf{x}}_j\|\frac{\partial^2 }{\partial x_{pj}\partial x_{qj}}f(\bar{\mathbf{x}})\\ &-\|{\mathbf{x}}_j\|{}^{-1}\left(x_{pj}\sum_{s=1}^{d+1}x_{sj}\frac{\partial^2 }{\partial x_{sj}\partial x_{qj}}f(\bar{\mathbf{x}})+x_{qj}\sum_{l=1}^{d+1}x_{lj}\frac{\partial^2 }{\partial x_{pj}\partial x_{lj}}f(\bar{\mathbf{x}})\right)\\ &+x_{pj}x_{qj}\sum_{l=1}^{d+1}\sum_{s=1}^{d+1}x_{sj}x_{lj}\frac{\partial^2 }{\partial x_{sj}\partial x_{lj}}f(\bar{\mathbf{x}})\Bigg\}\\ =&\;\|{\mathbf{x}}_j\|{}^{-3}\Big\{-{\mathbf{e}}_p^{\prime}{\mathbf{x}}_j\boldsymbol\nabla f(\bar{\mathbf{x}})'{\mathbf{e}}_q-{\mathbf{e}}_p^{\prime}\boldsymbol\nabla f(\bar{\mathbf{x}}){\mathbf{x}}^{\prime}_j{\mathbf{e}}_q\\ &+{\mathbf{e}}_p^{\prime}\big(3\|{\mathbf{x}}_j\|{}^{-2}{\mathbf{x}}_j{\mathbf{x}}^{\prime}_j-{\mathbf{I}}_{d+1}\big){\mathbf{e}}_q{\mathbf{x}}^{\prime}_j\nabla f(\bar{\mathbf{x}})+\|{\mathbf{x}}_j\|{\mathbf{e}}_p^{\prime}\boldsymbol{\mathcal{H}}_{jj} f(\bar{\mathbf{x}}){\mathbf{e}}_q\\ &-\|{\mathbf{x}}_j\|{}^{-1}\big({\mathbf{e}}_p^{\prime}{\mathbf{x}}_j{\mathbf{x}}^{\prime}_j\boldsymbol{\mathcal{H}}_{jj} f(\bar{\mathbf{x}}){\mathbf{e}}_q+{\mathbf{e}}_p^{\prime}\boldsymbol{\mathcal{H}}_{jj} f(\bar{\mathbf{x}}){\mathbf{x}}_j{\mathbf{x}}^{\prime}_j{\mathbf{e}}_q\big)\\ &+{\mathbf{e}}_p^{\prime}{\mathbf{x}}_j{\mathbf{x}}^{\prime}_j{\mathbf{e}}_q{\mathbf{x}}^{\prime}_j\boldsymbol{\mathcal{H}}_{jj} f(\bar{\mathbf{x}}){\mathbf{x}}_j\Big\}, {} \end{aligned} $$
(4.20)

with \(p,q=1,\ldots ,d+1\). Collecting the entries in (4.20) into \(\boldsymbol {\mathcal {H}}_{jj} \bar {f}(\mathbf {x})\), it follows that, for \(\mathbf {x} \in (\mathbb {S}^{d})^r\),

$$\displaystyle \begin{aligned} \boldsymbol{\mathcal{H}}_{jj} \bar{f}(\mathbf{x})=&-{\mathbf{x}}_j\boldsymbol\nabla_j f(\mathbf{x})-\boldsymbol\nabla_j f(\mathbf{x})'{\mathbf{x}}_j^{\prime}+(3{\mathbf{x}}_j{\mathbf{x}}_j^{\prime}-{\mathbf{I}}_{d+1})(\boldsymbol\nabla_j f(\mathbf{x}){\mathbf{x}}_j)\\ &+\boldsymbol{\mathcal{H}}_{jj} f(\mathbf{x})-({\mathbf{x}}_j{\mathbf{x}}^{\prime}_j\boldsymbol{\mathcal{H}}_{jj} f(\mathbf{x})+\boldsymbol{\mathcal{H}}_{jj} f(\mathbf{x}){\mathbf{x}}_j{\mathbf{x}}_j^{\prime})+{\mathbf{x}}_j{\mathbf{x}}_j^{\prime}({\mathbf{x}}_j^{\prime}\boldsymbol{\mathcal{H}}_{jj} f(\mathbf{x}){\mathbf{x}}_j)\\ =&\;({\mathbf{I}}_{d+1}-{\mathbf{x}}_j{\mathbf{x}}^{\prime}_j)\boldsymbol{\mathcal{H}}_{jj} f(\mathbf{x})({\mathbf{I}}_{d+1}-{\mathbf{x}}_j{\mathbf{x}}_j^{\prime})\\ &-(\boldsymbol\nabla_j f(\mathbf{x}){\mathbf{x}}_j)({\mathbf{I}}_{d+1}-{\mathbf{x}}_j{\mathbf{x}}_j^{\prime})-\mathbf{A}, {} \end{aligned} $$
(4.21)

where \(\mathbf {A}:=\big [{\mathbf {x}}_j\boldsymbol \nabla _j f(\mathbf {x})+({\mathbf {x}}_j\boldsymbol \nabla _j f(\mathbf {x}))'-2(\boldsymbol \nabla _j f(\mathbf {x}){\mathbf {x}}_j){\mathbf {x}}_j{\mathbf {x}}_j^{\prime }\big ]\) is a symmetric matrix that, differently from the other terms in (4.21), is non-orthogonal to \({\mathbf {x}}_j{\mathbf {x}}_j^{\prime }\):

$$\displaystyle \begin{aligned} \mathbf{A}({\mathbf{x}}_j{\mathbf{x}}_j^{\prime}) =&\;({\mathbf{x}}_j\boldsymbol\nabla_j f(\mathbf{x}))'-(\boldsymbol\nabla_j f(\mathbf{x}){\mathbf{x}}_j){\mathbf{x}}_j{\mathbf{x}}_j^{\prime}, \end{aligned} $$

despite being easy to check that \(({\mathbf {x}}_j{\mathbf {x}}_j^{\prime })\mathbf {A}({\mathbf {x}}_j{\mathbf {x}}_j^{\prime })=({\mathbf {I}}_{d+1}-{\mathbf {x}}_j{\mathbf {x}}_j^{\prime })\mathbf {A}({\mathbf {I}}_{d+1}-{\mathbf {x}}_j{\mathbf {x}}_j^{\prime })\)

\(=\mathbf {0}\).

In addition, for \(k,j=1,\ldots ,r\), \(k\neq j\), and \(p,q=1,\ldots ,d+1\),

$$\displaystyle \begin{aligned} \frac{\partial^2 }{\partial x_{pk}\partial x_{qj}}&\bar{f}(\mathbf{x})\\ =&\;\|{\mathbf{x}}_j\|{}^{-1}\frac{\partial }{\partial x_{pk}}\left(\frac{\partial }{\partial x_{qj}}f(\bar{\mathbf{x}})\right)-\|{\mathbf{x}}_j\|{}^{-3}\sum_{l=1}^{d+1}\left[\frac{\partial }{\partial x_{pk}}\left(\frac{\partial }{\partial x_{lj}}f(\bar{\mathbf{x}})\right)x_{lj}x_{qj}\right]\\ =&\;\|{\mathbf{x}}_j\|{}^{-1}\|{\mathbf{x}}_k\|{}^{-1}\Bigg\{\frac{\partial^2 }{\partial x_{pk}\partial x_{qj}}f(\bar{\mathbf{x}})\\ &-\|{\mathbf{x}}_k\|{}^{-2}x_{pk}\sum_{s=1}^{d+1}\frac{\partial^2 }{\partial x_{sk}\partial x_{qj}}f(\bar{\mathbf{x}}) x_{sk} -\|{\mathbf{x}}_j\|{}^{-2}x_{qj}\sum_{l=1}^{d+1}\frac{\partial^2 }{\partial x_{pk}\partial x_{lj}}f(\bar{\mathbf{x}})x_{lj}\\ &- \|{\mathbf{x}}_j\|{}^{-2}\|{\mathbf{x}}_k\|{}^{-2}x_{pk}x_{qj}\sum_{l=1}^{d+1}\sum_{s=1}^{d+1}x_{sk}x_{lj}\frac{\partial^2 }{\partial x_{sk}\partial x_{lj}}f(\bar{\mathbf{x}})\Bigg\}\\ =&\;\|{\mathbf{x}}_j\|{}^{-1}\|{\mathbf{x}}_k\|{}^{-1}\Big\{ {\mathbf{e}}_p^{\prime}\boldsymbol{\mathcal{H}}_{kj} f(\bar{\mathbf{x}}){\mathbf{e}}_q\\ &-\|{\mathbf{x}}_k\|{}^{-2}{\mathbf{e}}_p^{\prime}{\mathbf{x}}_k{\mathbf{x}}^{\prime}_k\boldsymbol{\mathcal{H}}_{kj} f(\bar{\mathbf{x}}){\mathbf{e}}_q-\|{\mathbf{x}}_j\|{}^{-2}{\mathbf{e}}_p^{\prime}\boldsymbol{\mathcal{H}}_{kj} f(\bar{\mathbf{x}}){\mathbf{x}}_j{\mathbf{x}}^{\prime}_j{\mathbf{e}}_q\\ &+\|{\mathbf{x}}_j\|{}^{-2}\|{\mathbf{x}}_k\|{}^{-2}{\mathbf{e}}_p^{\prime}{\mathbf{x}}_j{\mathbf{x}}^{\prime}_k{\mathbf{e}}_q{\mathbf{x}}^{\prime}_k\boldsymbol{\mathcal{H}}_{kj} f(\bar{\mathbf{x}}){\mathbf{x}}_j\Big\}. \end{aligned} $$

By an analogous collection of terms to that in (4.21), for \(\mathbf {x} \in (\mathbb {S}^{d})^r\), \(\boldsymbol {\mathcal {H}}_{kj} \bar {f}(\mathbf {x})=({\mathbf {I}}_{d+1}-{\mathbf {x}}_k{\mathbf {x}}_k^{\prime })\boldsymbol {\mathcal {H}}_{kj} f(\mathbf {x})({\mathbf {I}}_{d+1}-{\mathbf {x}}_j{\mathbf {x}}_j^{\prime })\). □

Proof (Proposition 2)

The proof follows after recalling that the unprojected estimator \(\tilde {m}(t;h):=\sum _{j=1}^nW_{j}(t;h){\mathbf {X}}_i\) satisfies \(\tilde {m}_{-i}(t;h)=\sum _{j=1,\, j\neq i}^nW_{-i,j}(t;h){\mathbf {X}}_j\) with \(W_{-i,j}(t;h)=W_j(t;h)/(1-W_i(t;h))\) since \(\sum _{i=1}^nW_i(t;h)=1\), for all \(t\in \mathbb {R}\). □

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo García-Portugués .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

García-Portugués, E., Meilán-Vila, A. (2023). Hippocampus Shape Analysis via Skeletal Models and Kernel Smoothing. In: Larriba, Y. (eds) Statistical Methods at the Forefront of Biomedical Advances. Springer, Cham. https://doi.org/10.1007/978-3-031-32729-2_4

Download citation

Publish with us

Policies and ethics

Navigation