Causes for Concern: Confounding Threats to Moths

  • Chapter
  • First Online:
The Other Lepidoptera: Moth Conservation in Australia
  • 99 Accesses

Abstract

Many factors influence habitat availability and suitability for moths, and the major categories of additional threats are noted here. Most flow directly from anthropogenic activities. Some engender strong conflicts of interest—for example use of pesticides for crop or other commodity protection and introductions of alien species (whether insects as biological control agents or plants as agricultural or forestry crops or as ornamentals)—and are recurrent concerns in insect conservation from possible non-target effects. Each may constitute an independent threat to native insects, or combine with other threats in other ways, often poorly defined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso-Rodriguez AM, Finegan B, Fiedler K (2017) Neotropical moth assemblages degrade due to oil palm expansion. Biodiv Conserv 26:2295–2326. https://doi.org/10.1007/s10531-017-1357-1

    Article  Google Scholar 

  • APVMA (Australian Pesticides and Veterinary Medicines Authority) (2021) Neonicotinoids chemical review (continuing, 2022). Canberra

    Google Scholar 

  • Armstrong KF, McHugh P, Chinn W, Frampton ER, Walsh PJ (2003) Tussock moth species arriving on imported used vehicles determined by DNA analysis. N Z Pl Prot 56:16–20

    CAS  Google Scholar 

  • Ashton LA, Nakamura A, Basset Y, Burwell CJ, Cao M et al (2016a) Vertical stratification of moths across elevation and latitude. J Biogeogr 43:59–69

    Article  Google Scholar 

  • Ashton LA, Nakamura A, Burwell CJ, Tang Y, Cao M et al (2016b) Elevational sensitivity in an Asian ‘hotspot’: moth diversity across elevational gradients in tropical, sub-tropical and sub-alpine China. Sci Reps 6:26513. https://doi.org/10.1038/srep.26513

    Article  CAS  Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM et al (2022) Herbivory in global climate change research: direct effects of rising temperature on insect herbivory. Glob Change Biol 8:1–169. https://doi.org/10.1046/j.1365-2486.2002.00451.x

    Article  Google Scholar 

  • Banza P, Macgregor CJ, Belo ADSF, Fox R, Pocock MJO, Evans DM (2019) Wildfire alters the structure and seasonal dynamics of nocturnal pollen-transport networks. Funct Ecol 33:1882–18982

    Article  Google Scholar 

  • Baranowski AK, Conroy C, Boettner GH, Elkinton JS, Preisser EL (2019) Reduced Compsilura concinnata parasitism of New England saturniid larvae. Agric For Entomol 21:346–349

    Article  Google Scholar 

  • Bates AJ, Sadler JP, Grundy D, Lowe N, Davis G et al (2014) Garden and landscape-scale correlates of moths of differing conservation status: significant effects of urbanization and habitat diversity. PLoS ONE 9(1):e86925. https://doi.org/10.1371/journal.pone.0086925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • BC (British Columbia Ministry of Environment and Climate Change Study) (2017) Recovery plan for the Island tiger moth (Grammia complicata) in British Columbia. Victoria, British Columbia

    Google Scholar 

  • Beaumont LJ, Hughes L (2002) Potential changes in the distributions of latitudinally restricted Australian butterflies in response to climate change. Glob Change Biol 8:954–971. https://doi.org/10.1046/j.1365-2486.2002.00490.x

    Article  Google Scholar 

  • Boettner GH, Elkinton JS, Boettner CJ (2000) Effects of a biological control introduction on three nontarget native species of saturniid moths. Conserv Biol 14:1798–1806

    Article  PubMed  Google Scholar 

  • Bonelli S, Cerrato C, Barbero F, Boiani MV, Buffa G et al (2022) Changes in alpine butterfly communities during the last 40 years. Insects 13:43. https://doi.org/10.3390/insects13010043

    Article  Google Scholar 

  • Bornemissza GF (1966) An attempt to control ragwort in Australia with the cinnabar moth, Callimorpha jacobaeae (L.) (Arctiidae: Lepidoptera). Aust J Zool 14:201–243

    Article  Google Scholar 

  • Boyes DH, Evans DM, Fox R, Parsons MS, Pocock MJO (2021a) Is light pollution driving moth population declines? A review of causal mechanisms across the life cycle. Insect Conserv Divers 14:167–187. https://doi.org/10.1111/icad.12447

    Article  Google Scholar 

  • Boyes DH, Evans DM, Fox R, Parsons MS, Pocock MJ (2021b) Street lighting has detrimental impacts on local insect populations. Sci Adv 7:eabi8322

    Article  PubMed  PubMed Central  Google Scholar 

  • Braganca MAL, De Marco JP, Zanuncio JC (2004) Moth species richness and similarity among habitats in a Eucalyptus-dominated landscape. Floresta Ambiente 11:26–32

    Google Scholar 

  • Braak N, Neve B, Jones AK, Gibbs M, Breuker CJ (2018) The effects of insecticides on butterflies: a review. Environ Poll 242:507–518. https://doi.org/10.1061/j.envpol.2018.06.100

    Article  CAS  Google Scholar 

  • Brockerhoff EG, Liebhold AM, Richardson B, Suckling GM (2010) Eradication of invasive forest insects: concepts, methods, costs and benefits. N Z J For Sci 40(Suppl):S117–S135

    Google Scholar 

  • Chen J, McQuillan PB, McDonald E, Hawkins C (2020) Citizen science reveals the Palaearctic poison hemlock moth Agonepterix alstroemeriana (Clerck) (Lepidoptera: Depressariidae) has established in Australia. N Z Entomol 43:86–92. https://doi.org/10.1080/00779962.2020.1820125

    Article  Google Scholar 

  • Chey VK (2006) Impacts of forest conversion on biodiversity as indicated by moths. Malayan Nat J 57:383–418

    Google Scholar 

  • Dieker P, Drees C, Assmann T (2011) Two high-mountain burnet moth species (Lepidoptera, Zygaenidae) react differently to the global change drivers climate and land-use. Biol Conserv 144:2810–2818

    Article  Google Scholar 

  • Dieker P, Drees C, Schmitt T, Assmann T (2013) Low genetic diversity of a high mountain burnet moth species in the Pyrenees. Conserv Genet. https://doi.org/10.1003/s10592-012-0424-0

  • Dodd AP (1940) The biological campaign against prickly pear. Commonwealth Prickly Pear Board, Brisbane

    Google Scholar 

  • Dugdale JS (1994) Hepialidae (Insecta: Lepidoptera). Fauna of New Zealand no 30. Manaaki Whenua Press, Lincoln

    Google Scholar 

  • Edwards ED, Green K (2011) Two new species of Oxycanus Walker (Lepidoptera: Hepialidae) from Kosciuszko National Park, one with a sub-brachypterous female. Aust J Entomol 50:78–85

    Article  Google Scholar 

  • Elkinton JS, Boettner G (2012) Benefits and harm caused by the introduced generalist tachinid, Compsilura concinnata, in North America. BioControl 57:277–288

    Article  Google Scholar 

  • Elkinton JS, Parry D, Boettner G (2006) Implicating an introduced generalist parasitoid in the invasive browntail moth’s enigmatic demise. Ecology 87:2664–2672

    Article  PubMed  Google Scholar 

  • Elliott CH, Gillett CPDT, Parsons E, Wright MG, Rubinoff D (2021) Identifying key threats to a refugial population of an endangered Hawaiian moth. Insect Conserv Divers 2021. https://doi.org/10.1111/icad/12553

  • Enkhtur K, Brehm G, Boldgiv B, Pfeiffer M (2021) Alpha and beta diversity patterns of macro-moths reveal a breakpoint along a latitudinal gradient in Mongolia. Sci Rep 11:15018. https://doi.org/10.1038/s41598-021-94471-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faast R, Weinstein P (2020) Plant-derived medicinal entomochemicals: an integrated approach to biodiscovery in Australia. Aust Entomol 59:3–15. https://doi.org/10.1111/aen.12433

    Article  Google Scholar 

  • Fall Armyworm Continuity Plan (2020) Fall Armyworm Continuity Plan for the Australian grains industry, Version 1, November 2020. Public Health Australia, Canberra

    Google Scholar 

  • Ferro VG, Lemes P, Melo AS, Loyola R (2014) The reduced effectiveness of protected areas under climate change threatens Atlantic Forest tiger moths. PLoS ONE 9(9):e107792. https://doi.org/10.1371/journal.pone.0107792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fowles AP, Bailey MP, Hale AD (2004) Trends in the recovery of a rosy marsh moth Coenophila subrosea (Lepidoptera: Noctuidae) population in response to fire and conservation management on a lowland raised mire. J Insect Conserv 8:149–158

    Article  Google Scholar 

  • Fox R (2013) The decline of moths in Great Britain: a review of possible causes. Insect Conserv Divers 6:5–19

    Article  Google Scholar 

  • Frank KD (2006) Effects of artificial night lighting on moths. In: Rich C, Longcore T (eds) Ecological consequences of artificial night lighting. Island Press, Washington, pp 305–344

    Google Scholar 

  • Gerson EA, Kelsey RG (1997) Attraction and direct mortality of pandora moth, Coloradia pandora (Lepidoptera: Saturniidae), by nocturnal fire. For Ecol Manag 98:71–75. https://doi.org/10.1016/S0378-1127-(97)00088-1

    Article  Google Scholar 

  • Goldstein PZ, Motila S, Capshaw G (2015) Stasis and flux among Saturniidae and Sphingidae (Lepidoptera) on Massachusetts’ offshore islands and the possible role of Compsilura concinnata (Meigen) (Diptera: Tachinidae) as an agent of mainland New England moth declines. Proc Entomol Soc Wash 117:347–386. https://doi.org/10.4289/0013-8797.1173.347

    Article  Google Scholar 

  • Goulson D (2013) An overview of the environmental risks posed by neonicotinoid insecticides. J Appl Ecol 50:977–989. https://doi.org/10.1111/1365-2664-12111

    Article  Google Scholar 

  • Green K (2008) Migratory Bogong moths (Agrotis infusa) transport arsenic and concentrate it to lethal effect by estivating gregariously in alpine regions of the Snowy Mountains of Australia. Arctic Antarctic Alpine Res 40:74–80

    Article  Google Scholar 

  • Green K, Broome L, Heinze D, Johnston S (2001) Long distance transport of arsenic by migrating bogong moths from agricultural lowlands to mountain ecosystems. Vict Nat 118:112–116

    Google Scholar 

  • Green K, Caley P, Baker M, Dreyer D, Wallace J, Warrant E (2021) Australian Bogong moths Agrotis infusa (Lepidoptera: Noctuidae), 1951-2020: decline and crash. Austral Entomol 60:66–81. https://doi.org/10.11111/aen.12517

    Article  Google Scholar 

  • Hawes J, da Silva MC, Overal W, Barlow J, Gardner TA, Peres CA (2009) Diversity and composition of Amazonian moths in primary, secondary and plantation forests. J Trop Ecol 25:281–300. https://doi.org/10.1007/50266467409006018

    Article  Google Scholar 

  • Highland SA, Miller JC, Jones JA (2013) Determinants of moth diversity and community in a temperate mountain landscape: vegetation, topography, and seasonality. Ecosphere 4(10):129. https://doi.org/10.1890/ES12-00384.1

    Article  Google Scholar 

  • Hill GM, Kawahara AY, Daniels JC, Bateman CC, Scheffers BR (2021) Climate change effects on animal ecology: butterflies and moths as a case study. Biol Revs 96:2113–2126

    Article  Google Scholar 

  • Hodgson JA, Randle Z, Shortall CR, Oliver TH (2022) Where and why are species’ range shifts hampered by unsuitable landscapes? Glob Change Biol 2022. https://doi.org/10.1111/gch.16220

  • Horak M, Mitchell A, Williams M (2020) National diagnostic protocol for Gypsy moths (Erebidae: Lymantriinae), focussing on L. dispar asiatica. Department of Agriculture and Water Resources, Canberra

    Google Scholar 

  • Howarth FG (1991) Environmental impacts of classical biological control. Annu Rev Entomol 36:485–509

    Article  Google Scholar 

  • Ireson JE, Holloway RJ, Chatterton WS (2000) Progress in the rearing, release and establishment of the horehound plume moth, Wheeleria spilodactylus (Curtis), for the biological control of horehound in Tasmania. Plant Prot Quart 15:33–35

    Google Scholar 

  • Kelnath S, Holker F, Muller J, Rodel M-O (2021) Impact of light pollution on moth morphology – a 137-year study in Germany. Bas Appl Ecol 56:1–10

    Article  Google Scholar 

  • Keret NM, Mutanen MJ, Orell MI, Itamies JH, Valimaki PM (2020) Climate change-driven elevational changes among boreal nocturnal moths. Oecologia 192:1085–1098

    Article  PubMed  PubMed Central  Google Scholar 

  • Kellogg SK, Fink LS, Brower LP (2003) Parasitism of native luna moths, Actias luna (L.) (Lepidoptera: Saturniidae) by the introduced Compsilura concinnata (Meigen) (Diptera: Tachinidae) in central Virginia, and their hyperparasitism by trigonalid wasps (Hymenoptera: Trigonalidae). Environ Entomol 32:1019–1027

    Article  Google Scholar 

  • Kocsis M, Hufnagel L (2011) Impacts of climate change on Lepidoptera species and communities. Appl Ecol Environ Res 9:43–72

    Article  Google Scholar 

  • Koot EM, Morgan-Richards M, Trewick SA (2022) Climate change and alpine-adapted insects: modelling environmental envelopes of a grasshopper radiation. R Soc Open Sci 9:211596. https://doi.org/10.1098/rsos.211596

    Article  PubMed  PubMed Central  Google Scholar 

  • Kral KC, Limb RF, Harmon JP, Hovacek TJ (2017) Arthropods and fire: previous research sha** future conservation. Rangel Ecol Manag 70:589–598

    Article  Google Scholar 

  • Levy JM, Connor EP (2004) Are gardens effective in butterfly conservation? A case study with the pipevine swallowtail, Battus philenor. J Insect Conserv 8:323–330

    Article  Google Scholar 

  • Lopez-Vaamonde C, Agassiz D, Augustin S, De Prins J, De Prins W et al (2010) Chapter 11, Lepidoptera. BioRisk 4:603–668. https://doi.org/10.3897/biorisk.4.50

    Article  Google Scholar 

  • Macgregor CJ, Thomas CD, Roy DB, Beaumont MA, Bell JR et al (2019) Climate-induced phenology shifts linked to range expansions in species with multiple reproductive cycles per year. Nat Commun. https://doi.org/10.1038/s41467-12479-w

  • Maino JL, Schouten R, Overton K, Day R, Ekesi S et al (2021) Regional and seasonal activity predictions for fall armyworm in Australia. Curr Res Insect Sci 1(2021):100010. https://doi.org/10.1016/j.cris.2021.100010

    Article  PubMed  PubMed Central  Google Scholar 

  • McCormick B (2005) Bogong moths and Parliament House. Research Brief No 5. Department of Parliamentary Services, Canberra

    Google Scholar 

  • McLaren DA (1992) Observations on the life cycle and establishment of Cochylis atricapitana (Lep: Cochylidae), a moth for biological control of Senecio jacobaeae in Australia. Entomophaga 37:641–648

    Article  Google Scholar 

  • McLaren DA, Ireson JE, Kwong RM (2000) Biological control of ragwort (Senecio jacobaea L.) in Australia. Proc X Int Symp Biol Control of Weeds, Montana, pp 67–79

    Google Scholar 

  • Matsuki M, Kay M, Serin J, Floyd R, Scott JK (2001) potential risks of accidental introduction of Asian gypsy moth (Lymantria dispar) to Australasia: effects of climatic conditions and suitability of native plants. Agric For Entomol 3:305–320. https://doi.org/10.1046/j.1461-9555.2001.00119.x

    Article  Google Scholar 

  • Morton R, Tuart LD, Wardhaugh KG (1981) The analysis and standardisation of light-trap catches of Heliothis armigera (Hubner) and H. punctigera (Wallrngren) (Lepidoptera: Noctuidae). Bull Entomol Res 71:207–225

    Article  Google Scholar 

  • New TR (2014) Insects, fire and conservation. Springer, Dordrecht

    Book  Google Scholar 

  • New TR, Yen AL, Sands DPA, Greenslade P, Neville PJ et al (2010) Planned fires and invertebrate conservation in south-east Australia. J Insect Conserv 14:567–574

    Article  Google Scholar 

  • Nielsen ES, McQuillan PB, Common IFB (1992) The Tasmanian cushion plant moth Nemotyla oribates Gen n., Sp. n.: systematics and biology (Lepidoptera: Oecophoridae: Xyloryctinae). J Aust Entomol Soc 31:47–56

    Article  Google Scholar 

  • Odell EH, Ashton LA, Kitching RL (2016) Elevation and moths in a central eastern Queensland rainforest. Austral Ecol 41:133–144. https://doi.org/10.1111/aec.12272

    Article  Google Scholar 

  • Palmer WA, Lockett CJ, Senaratne KADW, McLennan A (2007) The introduction and release of Chiasmia inconspicua and C. assimilis (Lepidoptera: Geometridae) for the biological control of Acacia nilotica in Australia. Biol Control 41:368–378. https://doi.org/10.1016/j.biocontrol.2007.02.009

    Article  Google Scholar 

  • Patrick BH (2004) Conservation of New Zealand’s tussock grassland moth fauna. J Insect Conserv 8:199–208

    Article  Google Scholar 

  • Peter A, Seress G, Sandor K, Vincze E, Klucsik KP, Liker A (2020) The effect of artificial lighting on the biomass of caterpillars feeding in urban tree canopies. Urban Ecosyst 23:1311–1319

    Article  Google Scholar 

  • Pisa LW, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Downs CA et al (2015) Effects of neonicotioids and fipronil on non-target invertebrates. Environ Sci Pollut Res 22:68–102

    Article  CAS  Google Scholar 

  • Plant Health Australia (2009) Threat specific recovery plan. Gypsy moth Asian and European strains (Lymantria dispar dispar). Canberra, Plant Health Australia

    Google Scholar 

  • Plummer KE, Hale JD, O’Callaghan MJ, Sadler JP, Siriwardena GM (2016) Investigating the impact of street lighting changes on garden moth communities. J Urb Ecol 2016:1–10. https://doi.org/10.1093/jue/juw004

    Article  Google Scholar 

  • Rich BR (2006) A feasibility study into the commercialisation of witchetty grubs. Publication No 06/109. Report for Rural Industries Research and Development Corporation. Australian Government, Canberra

    Google Scholar 

  • Rickman JK, Connor E (2003) The effect of urbanisation on the quality of remnant habitats for leaf-mining lepidoptera on Quercus agrifolia. Ecography 26:777–787

    Article  Google Scholar 

  • Rosch M, Chown SL, McGeoch MA (2001) Testing a bioindicator assemblage: gall-inhabiting moths and urbanization. Afr Entomol 9:85–94

    Google Scholar 

  • Ross MG (2005) Response to a gypsy moth incursion within New Zealand. (Paper presented at IUFRO Conference, Hanmer, 2004; www.b3.net.nz/gerda/refs)

  • Rubinoff D, San Jose M (2010) Life history and host range of Hawaii’s endangered Blackburn’s sphinx moth (Manduca blackburni Butler). Proc Hawaiian Entomol Soc 42:53–59

    Google Scholar 

  • Sands DPA, New TR (2002) The action plan for Australian butterflies. Environment Australia, Canberra

    Google Scholar 

  • Sands DPA, New TR (2013) Conservation of the Richmond birdwing butterfly in Australia. Springer, Dordrecht

    Book  Google Scholar 

  • Sattler K (1991) A review of wing reduction in Lepidoptera. Bull Br Mus Nat Hist (Ent) 60:243–288

    Google Scholar 

  • Scalercio S (2009) On top of a Mediterranean massif: climate change and conservation of orophilous moths at the southern boundary of their range (Lepidoptera: Macroheterocera). Eur J Entomol 106:231–239

    Article  Google Scholar 

  • Schmid JM, Thomas L, Rogers TJ (1981) Prescribed burning to increase mortality of pandora moth pupae. USDA Forest Service, Rocky Mountain Forest Range Experimental Research Station, research note RM-405

    Google Scholar 

  • Shrestha UB, Bawa KS (2013) Trade, harvest, and conservation of caterpillar fungus (Ophiocordyceps sinensis) in the Himalayas. Biol Conserv 159:514–520

    Article  Google Scholar 

  • Shrestha UB, Bawa KS (2015) Harvesters’ perceptions of population status and conservation of Chinese caterpillar fungus in the Dolpa region of Nepal. Reg Environ Change 15:1731–1741

    Article  Google Scholar 

  • Somers-Yeates R, Hodgson D, McGregor PK, Spalding A, ffrench-Constant RH (2013) Shedding light on moths: shorter wavelengths attract noctuids more than geometrids. Biol Lett 9:20130376

    Article  PubMed  PubMed Central  Google Scholar 

  • Sordello R, Busson S, Comuau JH, Deverchere P, Faure B et al (2022) A plea for a worldwide development of dark infrastructure for biodiversity – practical examples and ways to go forward. Landsc Urb Plan 219:104332. https://doi.org/10.1016/j.landurbplan.2021.104332

    Article  Google Scholar 

  • Steinbauer MJ (2003) Using ultra-violet light traps to monitor autumn gum moth, Mnesampela privata (Lepidoptera: Geometridae), in south-eastern Australia. Aust For 66:279–286

    Article  Google Scholar 

  • Tallamy DW, Shropshire KJ (2009) Ranking lepidopteran use of native versus introduced plants. Conserv Biol 23:941–947. https://doi.org/10.1111/j.1523-1739.2009.01202.x

    Article  PubMed  Google Scholar 

  • Tremewan WG (1966) The history of Zygaena viciae anglica Reiss (Lep., Zygaenidae) in the New Forest. Entomol Gaz 17:187–211

    Google Scholar 

  • van Langevelde F, van Grunsen RHA, Veenendaal EM, Fijen TPM (2017) Artificial night-lighting inhibits feeding in moths. Biol Lett 13:20160874. https://doi.org/10.1098/rsbl.2016.0874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Langevelde F, Braamburg-Annegarn M, Huigens ME, Groendijk R, Poitevin O et al (2018) Declines in moth populations stress the need for conserving dark nights. Glob Change Biol 24:925–932. https://doi.org/10.1111/gcb.14008

    Article  Google Scholar 

  • Wakefield A, Broyles M, Stone EL, Jones G, Harris S (2016) Experimentally comparing the attractiveness of domestic lights to insects: do LEDs attract fewer insects than conventional light types? Ecol Evol 6:8028–8036

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson RJ, Fox R (2021) Insect responses to global change offer signposts for biodiversity and conservation. Ecol Entomol 46:699–717. https://doi.org/10.1111/een.12970

    Article  Google Scholar 

  • Wood TJ, Goulson D (2017) The environmental risks of neonicotinoid pesticides: a review of the evidence post 2013. Environ Sci Poll Res Int 24:7285–17325. https://doi.org/10.1007/s11356-017-9240-x

    Article  CAS  Google Scholar 

  • **ng S, Bonebrake TC, Ashton LA, Kitching RL, Cao M et al (2018) Colors of night: climate-morphology relationships of geometrid moths along spatial gradients in southern China. Oecologia 188:537–546

    Article  PubMed  Google Scholar 

  • Yan Y, Li Y, Wang W-J, He J-S, Yang R-H et al (2017) Range shifts in response to climate change of Ophiocordyceps sinensis, a fungus endemic to the Tibetan Plateau. Biol Conserv 206:143–150

    Article  Google Scholar 

  • Yen A, Bilney C, Shackleton ME, Lawler S (2018) Current issues involved with the identification and nutritional value of wood grubs consumed by Australian aborigines. Insect Sci 25:199–210. https://doi.org/10.1111/1744-7917.12430

    Article  PubMed  Google Scholar 

  • Yoon S, Read Q (2016) Consequences of exotic host use: impacts on Lepidoptera and a test of the ecological trap hypothesis. Oecologia 181:985–996

    Article  PubMed  Google Scholar 

  • Young MR, Barbour DA (2004) Conserving the New Forest burnet (Zygaena viciae [Denis and Schiffermuller]) in Scotland; responses to grazing reduction and consequent vegetation changes. J Insect Conserv 8:137–148

    Article  Google Scholar 

  • Zanuncio JC, Lemes PG, Santos GP, Wilcken CF, Zache B et al (2014) Alpha and beta diversity of Lepidoptera in Eucalyptus plantations in the Amazonian region of Brazil. Fla Entomol 97:138–145. https://doi.org/10.1896/054.097.0119

    Article  Google Scholar 

  • Zimmermann H, Bloem S, Klein H (2004) Biology, history, threat, surveillance and control of the cactus moth, Cactoblastis cactorum. AIAEA, Vienna

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

New, T.R. (2023). Causes for Concern: Confounding Threats to Moths. In: The Other Lepidoptera: Moth Conservation in Australia. Springer, Cham. https://doi.org/10.1007/978-3-031-32103-0_5

Download citation

Publish with us

Policies and ethics

Navigation