Ex-Situ Remedies

  • Chapter
  • First Online:
Passive Treatments for Mine Drainage

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 108 Accesses

Abstract

Ex-situ remedies refer to treatments that use natural hydraulic gradients or pump-and-treat methods to remediate mine drainage or developed plumes off-site; these include anoxic limestone drains, permeable reactive barriers, constructed wetlands, and gravel bed reactors. The following chapter delves into each of their technologies in terms of their removal principles, research trends, and identified literary gaps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.A. Cravotta, G.R. Watzlaf, Design and performance of limestone drains to increase ph and remove metals from acidic mine drainage, in Handbook of Groundwater Remediation using Permeable Reactive Barriers (Elsevier, 2003), pp. 19–66. https://doi.org/10.1016/B978-012513563-4/50006-2

  2. R.S. Hedin, R.W. Narin, R.L. Kleinmann, Passive treatment of coal mine drainage (1994)

    Google Scholar 

  3. C.A. Cravotta, Size and performance of anoxic limestone drains to neutralize acidic mine drainage. J. Environ. Qual. 33(3), 1164-a (2004). https://doi.org/10.2134/jeq2004.1164a.

  4. S. Santomartino, J.A. Webb, Estimating the longevity of limestone drains in treating acid mine drainage containing high concentrations of iron. Appl. Geochem. 22(11), 2344–2361 (2007). https://doi.org/10.1016/j.apgeochem.2007.04.020

    Article  Google Scholar 

  5. G.A. Brodie, C.R. Britt, T.M. Tomaszewski, H.N. Taylor, Use of passive anoxic limestone drains to enhance performance of acid drainage treatment wetlands. Undefined 1991(1), 211–228 (1991). https://doi.org/10.21000/JASMR91010211

  6. J.A. LaBar, R.W. Nairn, G.A. Canty, Generation of 400–500 MG/L alkalinity in a vertical anoxic limestone drain, in 25th Annual Meetings of the American Society of Mining and Reclamation and 10th Meeting of IALR 2008, vol. 1, no. January 2018 (2008), pp. 553–565. https://doi.org/10.21000/jasmr08010551

  7. D. Naftz, S.J. Morrison, C.C. Fuller, J.A. Davis, Handbook on Permeable Reactive Barriers (Academic Press, San Diego, Calif, 2002)

    Google Scholar 

  8. E. Torres, P. Gómez, Chapter 7. Permeable Reactive Barriers (PRBs) for Environmental Site Remediation (2020). https://doi.org/10.1039/9781788016261-00191

  9. M.S.H. Mak, I.M.C. Lo, Environmental life cycle assessment of permeable reactive barriers: effects of construction methods. Reactive Mater. Groundwater Constituents 10148–10154 (2011)

    Google Scholar 

  10. T.M. Olson, Life-Cycle case study comparison of permeable reactive barrier versus pump-and-treat remediation. Environ. Sci. Technol. 43(24), 9432–9438 (2009)

    Article  Google Scholar 

  11. D. Richard, A. Mucci, C. Mihaela, J. Zagury, Comparison of organic materials for the passive treatment of synthetic neutral mine drainage contaminated by nickel: short- and medium-term batch experiments. Appl. Geochem. 123(September) (2020). https://doi.org/10.1016/j.apgeochem.2020.104772

  12. A. Jeen, S.W. Martin, Permeable reactive barrier treatment Appendix 2.6D (2013)

    Google Scholar 

  13. A. Schwarz et al., Evaluation of dispersed alkaline substrate and diffusive exchange system technologies for the passive treatment of copper mining acid drainage. Water (Switzerland) 12(3) (2020). https://doi.org/10.3390/w12030854

  14. A. Schwarz, P. Norma, Long-term operation of a permeable reactive barrier with diffusive exchange. J. Environ. Manage. 284(August 2019), 112086 (2021). https://doi.org/10.1016/j.jenvman.2021.112086

  15. A.O. Schwarz, B.E. Rittmann, The diffusion-active permeable reactive barrier. J. Contam. Hydrol. 112(1–4), 155–162 (2010). https://doi.org/10.1016/j.jconhyd.2009.12.004

    Article  Google Scholar 

  16. N. Pérez, A.O. Schwarz, E. Barahona, P. Sanhueza, I. Diaz, H. Urrutia, Performance of two differently designed permeable reactive barriers with sulfate and zinc solutions. Sci. Total Environ. 642, 894–903 (2018). https://doi.org/10.1016/j.scitotenv.2018.06.046

    Article  Google Scholar 

  17. N. Pérez, A. Schwarz, J. de Bruijn, Evaluation of fine organic mixtures for treatment of acid mine drainage in sulfidogenic reactors. Water Sci. Technol. 78(8), 1715–1725 (2018). https://doi.org/10.2166/wst.2018.452

    Article  Google Scholar 

  18. M. Torregrosa, A. Schwarz, I. Nancucheo, E. Balladares, Evaluation of bio-protection mechanis in diffusive exchange permeable reactive barriers for the treatment of acid mine drainage. Sci. Total Environ. 374–383 (2019). [Online]. Available: https://doi.org/10.1016/j.scitotenv.2018.11.083

  19. P. Ayala-Parra, R. Sierra-Alvarez, J.A. Field, Treatment of acid rock drainage using a sulfate-reducing bioreactor with zero-valent iron. J. Hazard. Mater. 308, 97–105 (2016). https://doi.org/10.1016/j.jhazmat.2016.01.029

    Article  Google Scholar 

  20. G.B. Trindade, P.S. Hemsi, D.C. Buzzi, J.A.S. Tenório, M.E.G. Boscov, Rates of Sulfate reduction achieved in columns based on untreated sugarcane bagasse for metals removal. J. Environ. Eng. 144(7), 04018046 (2018). https://doi.org/10.1061/(asce)ee.1943-7870.0001382

    Article  Google Scholar 

  21. P. Kijjanapanich, K. Pakdeerattanamint, P.N.L. Lens, A.P. Annachhatre, Organic substrates as electron donors in permeable reactive barriers for removal of heavy metals from acid mine drainage. Environ. Technol. (United Kingdom) 33(23), 2635–2644 (2012). https://doi.org/10.1080/09593330.2012.673013

    Article  Google Scholar 

  22. P. Ayala-Parra, R. Sierra-Alvarez, J.A. Field, Algae as an electron donor promoting sulfate reduction for the bioremediation of acid rock drainage. J. Hazard. Mater. 317, 335–343 (2016). https://doi.org/10.1016/j.jhazmat.2016.06.011

    Article  Google Scholar 

  23. J. Guo, Y. Kang, Y. Feng, Bioassessment of heavy metal toxicity and enhancement of heavy metal removal by sulfate-reducing bacteria in the presence of zero valent iron. J. Environ. Manage. 203, 278–285 (2017). https://doi.org/10.1016/j.jenvman.2017.07.075

    Article  Google Scholar 

  24. K. Sasaki, D.W. Blowes, C.J. Ptacek, W.D. Gould, Immobilization of Se(VI) in mine drainage by permeable reactive barriers: column performance. Appl. Geochem. 23(5), 1012–1022 (2008). https://doi.org/10.1016/j.apgeochem.2007.08.007

    Article  Google Scholar 

  25. J.U. Angai, C.J. Ptacek, E. Pakostova, J.G. Bain, B.R. Verbuyst, D.W. Blowes, Removal of arsenic and metals from groundwater impacted by mine waste using zero-valent iron and organic carbon: laboratory column experiments. J. Hazard. Mater. 424(PA), 127295 (2022). https://doi.org/10.1016/j.jhazmat.2021.127295

  26. S.W. Jeen, J.G. Bain, D.W. Blowes, Evaluation of mixtures of peat, zero-valent iron and alkalinity amendments for treatment of acid rock drainage. Appl. Geochem. 43, 66–79 (2014). https://doi.org/10.1016/j.apgeochem.2014.02.004

    Article  Google Scholar 

  27. R.D. Ludwig et al., Treatment of arsenic, heavy metals, and acidity using a mixed ZVI-compost PRB. Environ. Sci. Technol. 43(6), 1970–1976 (2009). https://doi.org/10.1021/es802394p

    Article  Google Scholar 

  28. C. de Repentigny, G.J. Zagury, B. Courcelles, Centripetal filtration of groundwater to improve the lifetime of an MgO recycled refractory filter: observations and technical challenges. Environmental Science and Pollution Research (2019), pp. 15314–15323. https://doi.org/10.1007/s11356-019-04910-y

  29. C. de Repentigny, B. Courcelles, G.J. Zagury, Spent MgO-carbon refractory bricks as a material for permeable reactive barriers to treat a nickel- and cobalt-contaminated groundwater. Environ. Sci. Pollut. Res. 25(23), 23205–23214 (2018). https://doi.org/10.1007/s11356-018-2414-3

    Article  Google Scholar 

  30. A.N. Shabalala, S.O. Ekolu, Quality of water recovered by treating acid mine drainage using pervious concrete adsorbent. Water SA 45(4), 638–647 (2019). https://doi.org/10.17159/wsa/2019.v45.i4.7545

    Article  Google Scholar 

  31. A.N. Shabalala, S.O. Ekolu, S. Diop, F. Solomon, Pervious concrete reactive barrier for removal of heavy metals from acid mine drainage—column study. J. Hazard. Mater. 323, 641–653 (2017). https://doi.org/10.1016/j.jhazmat.2016.10.027

    Article  Google Scholar 

  32. R.R. Holmes, M.L. Hart, J.T. Kevern, Heavy metal removal capacity of individual components of permeable reactive concrete. J. Contam. Hydrol. 196, 52–61 (2017). https://doi.org/10.1016/j.jconhyd.2016.12.005

    Article  Google Scholar 

  33. S.N. Jones, B. Cetin, Evaluation of waste materials for acid mine drainage remediation. Fuel 188, 294–309 (2017). https://doi.org/10.1016/j.fuel.2016.10.018

    Article  Google Scholar 

  34. Z.T. Abd Ali et al., Predominant mechanisms for the removal of nickel metal ion from aqueous solution using cement kiln dust. J. Water Process Eng. 33(October 2019), 101033 (2020). https://doi.org/10.1016/j.jwpe.2019.101033

  35. R.M.P. Farage, M.J. Quina, L. Gando-Ferreira, C.M. Silva, J.J.L.L. de Souza, C.M.M.E. Torres, Kraft pulp mill dregs and grits as permeable reactive barrier for removal of copper and sulfate in acid mine drainage. Sci. Rep. 10(1), 1–10 (2020). https://doi.org/10.1038/s41598-020-60780-2

    Article  Google Scholar 

  36. L. Wenbo, F. Qiyan, L. Haoqian, C. Di, L. **angdong, Passive treatment test of acid mine drainage from an abandoned coal mine in Kaili Guizhou, China. Water Sci. Technol. 84(8), 1981–1996 (2021). https://doi.org/10.2166/wst.2021.405

    Article  Google Scholar 

  37. R. Millán-Becerro, R. Pérez-López, F. Macías, C.R. Cánovas, Design and optimization of sustainable passive treatment systems for phosphogypsum leachates in an orphan disposal site. J. Environ. Manage. 275(April) (2020). https://doi.org/10.1016/j.jenvman.2020.111251

  38. E. Torres, A. Lozano, F. Macías, A. Gomez-Arias, J. Castillo, C. Ayora, Passive elimination of sulfate and metals from acid mine drainage using combined limestone and barium carbonate systems. J. Clean. Prod. 182, 114–123 (2018). https://doi.org/10.1016/j.jclepro.2018.01.224

    Article  Google Scholar 

  39. A. Larraguibel, A. Navarrete-Calvo, S. García, V.F. Armijos, M.A. Caraballo, Exploring sulfate and metals removal from Andean acid mine drainage using CaCO3-rich residues from agri-food industries and witherite (BaCO3). J. Clean. Prod. 274 (2020). https://doi.org/10.1016/j.jclepro.2020.123450

  40. A. Esmaeili, M. Mobini, H. Eslami, Removal of heavy metals from acid mine drainage by native natural clay minerals, batch and continuous studies. Appl. Water Sci. 9(4), 1–6 (2019). https://doi.org/10.1007/s13201-019-0977-x

    Article  Google Scholar 

  41. F. di Natale, M. di Natale, R. Greco, A. Lancia, C. Laudante, D. Musmarra, Groundwater protection from cadmium contamination by permeable reactive barriers. J. Hazard. Mater. 160(2–3), 428–434 (2008). https://doi.org/10.1016/j.jhazmat.2008.03.015

    Article  Google Scholar 

  42. J. Oliva, J. de Pablo, J.L. Cortina, J. Cama, C. Ayora, Removal of cadmium, copper, nickel, cobalt and mercury from water by Apatite IITM: column experiments. J. Hazard. Mater. 194, 312–323 (2011). https://doi.org/10.1016/j.jhazmat.2011.07.104

    Article  Google Scholar 

  43. J. Oliva, J. Cama, J.L. Cortina, C. Ayora, J. de Pablo, Biogenic hydroxyapatite (Apatite IITM) dissolution kinetics and metal removal from acid mine drainage. J. Hazard. Mater. 213–214, 7–18 (2012). https://doi.org/10.1016/j.jhazmat.2012.01.027

    Article  Google Scholar 

  44. A.A.H. Faisal, M.D. Ahmed, Removal of copper ions from contaminated groundwater using waste foundry sand as permeable reactive barrier. Int. J. Environ. Sci. Technol. 12(8), 2613–2622 (2015). https://doi.org/10.1007/s13762-014-0670-4

    Article  Google Scholar 

  45. S. Bilardi, P.S. Calabrò, N. Moraci, The removal efficiency and long-term hydraulic behaviour of zero valent iron/lapillus mixtures for the simultaneous removal of Cu2+, Ni2+ and Zn2+. Sci. Total Environ. 675, 490–500 (2019). https://doi.org/10.1016/j.scitotenv.2019.04.260

    Article  Google Scholar 

  46. M.G. Madaffari, S. Bilardi, P.S. Calabrò, N. Moraci, Nickel removal by zero valent iron/lapillus mixtures in column systems. Soils Found. 57(5), 745–759 (2017). https://doi.org/10.1016/j.sandf.2017.08.006

    Article  Google Scholar 

  47. S. Bilardi, P.S. Calabrò, S. Caré, N. Moraci, C. Noubactep, Improving the sustainability of granular iron/pumice systems for water treatment. J. Environ. Manage. 121, 133–141 (2013). https://doi.org/10.1016/j.jenvman.2013.02.042

    Article  Google Scholar 

  48. X. Kong, Z. Han, W. Zhang, L. Song, H. Li, Synthesis of zeolite-supported microscale zero-valent iron for the removal of Cr6+ and Cd2+ from aqueous solution. J. Environ. Manage. 169, 84–90 (2016). https://doi.org/10.1016/j.jenvman.2015.12.022

    Article  Google Scholar 

  49. D. Limper, G.P. Fellinger, S.O. Ekolu, Evaluation and microanalytical study of ZVI/scoria zeolite mixtures for treating acid mine drainage using reactive barriers—removal mechanisms. J. Environ. Chem. Eng. 6(5), 6184–6193 (2018). https://doi.org/10.1016/j.jece.2018.08.064

    Article  Google Scholar 

  50. X. Kong, G. Huang, Z. Han, Y. Xu, M. Zhu, Z. Zhang, Evaluation of zeolite-supported microscale zero-valent iron as a potential adsorbent for Cd2+ and Pb2+ removal in permeable reactive barriers. Environ. Sci. Pollut. Res. 24(15), 13837–13844 (2017). https://doi.org/10.1007/s11356-017-8974-9

    Article  Google Scholar 

  51. S. Tasharrofi et al., Adsorption of cadmium using modified zeolite-supported nanoscale zero-valent iron composites as a reactive material for PRBs. Sci. Total Environ. 736 (2020). https://doi.org/10.1016/j.scitotenv.2020.139570

  52. S. Bilardi, P.S. Calabrò, R. Greco, N. Moraci, Removal of heavy metals from landfill leachate using zero valent iron and granular activated carbon. Environ. Technol. (United Kingdom) 41(4), 498–510 (2020). https://doi.org/10.1080/09593330.2018.1503725

    Article  Google Scholar 

  53. H. Dong et al., The roles of a pillared bentonite on enhancing Se(VI) removal by ZVI and the influence of co-existing solutes in groundwater. J. Hazard. Mater. 304, 306–312 (2016). https://doi.org/10.1016/j.jhazmat.2015.10.072

    Article  Google Scholar 

  54. R.C. Moore, M.J. Rigali, P. Brady, Selenite sorption by carbonate substituted apatite. Environ. Pollut. 218, 1102–1107 (2016). https://doi.org/10.1016/j.envpol.2016.08.063

    Article  Google Scholar 

  55. T.M. Statham, K.A. Mumford, J.L. Rayner, G.W. Stevens, Removal of copper and zinc from ground water by granular zero-valent iron: a dynamic freeze-thaw permeable reactive barrier laboratory experiment. Cold Reg. Sci. Technol. 110, 120–128 (2015). https://doi.org/10.1016/j.coldregions.2014.12.001

    Article  Google Scholar 

  56. A. Weber, A.S. Ruhl, R.T. Amos, Investigating dominant processes in ZVI permeable reactive barriers using reactive transport modeling. J. Contam. Hydrol. 151, 68–82 (2013). https://doi.org/10.1016/j.jconhyd.2013.05.001

    Article  Google Scholar 

  57. A.D. Henderson, A.H. Demond, Impact of solids formation and gas production on the permeability of ZVI PRBs. J. Environ. Eng. 137(8), 689–696 (2011). https://doi.org/10.1061/(asce)ee.1943-7870.0000383

    Article  Google Scholar 

  58. S.O. Ekolu, L.K. Bitandi, Prediction of longevities of ZVI and pervious concrete reactive barriers using the transport simulation model. J. Environ. Eng. 144(9), 04018074 (2018). https://doi.org/10.1061/(ASCE)EE.1943-7870.0001402

    Article  Google Scholar 

  59. N. Moraci, P.S. Calabrò, Heavy metals removal and hydraulic performance in zero-valent iron/pumice permeable reactive barriers. J. Environ. Manage. 91(11), 2336–2341. November (2010). https://doi.org/10.1016/j.jenvman.2010.06.019. PMID: 20643500

  60. S. Klimkova, M. Cernik, L. Lacinova, J. Filip, D. Jancik, R. Zboril, Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching. Chemosphere 82(8), 1178–1184 (2011). https://doi.org/10.1016/j.chemosphere.2010.11.075

    Article  Google Scholar 

  61. C. Shan et al., Enhanced removal of Se(VI) from water via pre-corrosion of zero-valent iron using H2O2/HCl: Effect of solution chemistry and mechanism investigation. Water Res 133, 173–181 (2018). https://doi.org/10.1016/j.watres.2018.01.038

    Article  Google Scholar 

  62. P. Fan, Y. Sun, B. Zhou, X. Guan, Couple effect of sulfiation an ferrous dosing on selenate removal by zerovalent iron uner aerobic conitions. Environ. Sci. Technol. 53(24), 14577–14585 (2019). https://doi.org/10.1021/acs.est.9b04956

    Article  Google Scholar 

  63. A.H. Sulaymon, A.A.H. Faisal, Q.M. Khaliefa, Cement kiln dust (CKD)-filter sand permeable reactive barrier for the removal of Cu(II) and Zn(II) from simulated acidic groundwater. J. Hazard. Mater. 297, 160–172 (2015). https://doi.org/10.1016/j.jhazmat.2015.04.061

    Article  Google Scholar 

  64. M. Mahedi, A.Y. Dayioglu, B. Cetin, S. Jones, Remediation of acid mine drainage with recycled concrete aggregates and fly ash. Environ. Geotech. 1–14 (2020). https://doi.org/10.1680/jenge.19.00150

  65. P. Hlabela, J. Maree, D. Bruinsma, Barium carbonate process for sulphate and metal removal from mine water. Mine Water Environ. 26(1), 14–22 (2007). https://doi.org/10.1007/s10230-007-0145-7

    Article  Google Scholar 

  66. A.M. Silva, R.M.F. Lima, V.A. Leão, Mine water treatment with limestone for sulfate removal. J. Hazard. Mater. 221–222, 45–55 (2012). https://doi.org/10.1016/j.jhazmat.2012.03.066

    Article  Google Scholar 

  67. I.L. Calugaru, C.M. Neculita, T. Genty, G.J. Zagury, Removal and recovery of Ni and Zn from contaminated neutral drainage by thermally activated dolomite and hydrothermally activated wood ash. Water Air Soil Pollut. 231(5) (2020). https://doi.org/10.1007/s11270-020-04600-3

  68. I.L. Calugaru, C.M. Neculita, T. Genty, B. Bussière, R. Potvin, Performance of thermally activated dolomite for the treatment of Ni and Zn in contaminated neutral drainage. J. Hazard. Mater. 310, 48–55 (2016). https://doi.org/10.1016/J.JHAZMAT.2016.01.069

    Article  Google Scholar 

  69. I.L. Calugaru et al., Removal of Ni and Zn in contaminated neutral drainage by raw and modified wood ash. J. Environ. Sci. Health, Part A. Removal of Ni and Zn contaminated neutral drainage by raw and modified wood ash. Toxic/Hazardous Subst. Environ. Eng. (2016). https://doi.org/10.1080/10934529.2016.1237120

  70. O.R. Stein, D.J. Borden-Stewart, P.B. Hook, W.L. Jones, Seasonal influence on sulfate reduction and zinc sequestration in subsurface treatment wetlands. Water Res. 41(15), 3440–3448 (2007). https://doi.org/10.1016/j.watres.2007.04.023

    Article  Google Scholar 

  71. T. Genty, B. Bussière, M. Benzaazoua, C.M. Neculita, G.J. Zagury, Changes in efficiency and hydraulic parameters during the passive treatment of ferriferous acid mine drainage in biochemical reactors. Mine Water Environ. 37(4), 686–695 (2018). https://doi.org/10.1007/s10230-018-0514-4

    Article  Google Scholar 

  72. K. von Gunten et al., Biogeochemical behavior of metals along two permeable reactive barriers in a mining-affected wetland. J. Geophys. Res. Biogeosci. 124(11), 3536–3554 (2019). https://doi.org/10.1029/2019JG005438

    Article  Google Scholar 

  73. O. Gibert, J.L. Cortina, J. de Pablo, C. Ayora, Performance of a field-scale permeable reactive barrier based on organic substrate and zero-valent iron for in situ remediation of acid mine drainage. Environ. Sci. Pollut. Res. 20(11), 7854–7862 (2013). https://doi.org/10.1007/s11356-013-1507-2

    Article  Google Scholar 

  74. O. Gibert et al., In-situ remediation of acid mine drainage using a permeable reactive barrier in Aznalcóllar (Sw Spain). J. Hazard. Mater. 191(1–3), 287–295 (2011). https://doi.org/10.1016/j.jhazmat.2011.04.082

    Article  Google Scholar 

  75. J. Chen et al., Promotion of bioremediation performance in constructed wetland microcosms for acid mine drainage treatment by using organic substrates and supplementing domestic wastewater and plant litter broth. J. Hazard. Mater. 404(PA), 124125 (2021). https://doi.org/10.1016/j.jhazmat.2020.124125

  76. A.S. Sheoran, Management of acidic mine waste water by constructed wetland treatment systems: a bench scale study. Eur. J. Sustain. Dev. 6(2), 245–255 (2017). https://doi.org/10.14207/ejsd.2017.v6n2p245

    Article  Google Scholar 

  77. O.E. Aguinaga, J.F.T. Wakelin, K.N. White, A.P. Dean, J.K. Pittman, The association of microbial activity with Fe, S and trace element distribution in sediment cores within a natural wetland polluted by acid mine drainage. Chemosphere 231, 432–441 (2019). https://doi.org/10.1016/j.chemosphere.2019.05.157

    Article  Google Scholar 

  78. J.D. Kiiskila, D. Sarkar, S. Panja, S.V. Sahi, R. Datta, Remediation of acid mine drainage-impacted water by vetiver grass (Chrysopogon zizanioides): a multiscale long-term study. Ecol. Eng. 129(October 2018), 97–108 (2019). https://doi.org/10.1016/j.ecoleng.2019.01.018

  79. A.S. Sheoran, Performance of three aquatic plant species in bench-scale acid mine drainage wetland test cells. Mine Water Environ. 25(1), 23–36 (2006). https://doi.org/10.1007/s10230-006-0105-7

    Article  Google Scholar 

  80. K. Lizama-Allende, J. Ayala, I. Jaque, P. Echeverría, The removal of arsenic and metals from highly acidic water in horizontal subsurface flow constructed wetlands with alternative supporting media. J. Hazard. Mater. 408(September 2020), 124832 (2020). https://doi.org/10.1016/j.jhazmat.2020.124832

  81. S. Arai, K. Nakano, O. Nishimura, Y. Aikawa, Effect of temperature, Ph and vegetation on the removal of zinc from mine water in aerobic wetland mesocosm. J. Japan Soc. Civil Eng. Ser. G (Environ. Res.) 69(7), III_91-III_97 (2013). https://doi.org/10.2208/jscejer.69.iii_91

  82. B. Collins, J.V. McArthur, R.R. Sharitz, Plant effects on microbial assemblages and remediation of acidic coal pile runoff in mesocosm treatment wetlands. Ecol. Eng. 23(2), 107–115 (2004). https://doi.org/10.1016/j.ecoleng.2004.07.005

    Article  Google Scholar 

  83. G. Bonanno, G.L. Cirelli, Comparative analysis of element concentrations and translocation in three wetland congener plants: Typha domingensis, Typha latifolia and Typha angustifolia. Ecotoxicol. Environ. Saf. 143(March), 92–101 (2017). https://doi.org/10.1016/j.ecoenv.2017.05.021

    Article  Google Scholar 

  84. W.F. Compaore, A. Dumoulin, D.P.L. Rousseau, Metal uptake by spontaneously grown Typha domingensis and introduced Chrysopogon zizanioides in a constructed wetland treating gold mine tailing storage facility seepage. Ecol. Eng. 158(September), 106037 (2020). https://doi.org/10.1016/j.ecoleng.2020.106037

  85. M.M. Nabuyanda, J. van Bruggen, P. Kelderman, K. Irvine, Investigating Co, Cu, and Pb retention and remobilization after drying and rewetting treatments in greenhouse laboratory-scale constructed treatments with and without Typha angustifolia, and connected phytoremediation potential. J. Environ. Manage. 236(October 2018), 510–518 (2019). https://doi.org/10.1016/j.jenvman.2019.02.016

  86. E. Heiderscheidt, U.A. Khan, K. Kujala, A.K. Ronkanen, H. Postila, Design, construction and monitoring of pilot systems to evaluate the effect of freeze-thaw cycles on pollutant retention in wetlands. Sci. Total Environ. 703, 134713 (2020). https://doi.org/10.1016/j.scitotenv.2019.134713

    Article  Google Scholar 

  87. A.E.J. Firth, N. Mac Dowell, P.S. Fennell, J.P. Hallett, Assessing the economic viability of wetland remediation of wastewater, and the potential for parallel biomass valorization. Environ. Sci. (Camb) 6(8), 2103–2121 (2020). https://doi.org/10.1039/d0ew00324g

  88. S. Singh, S. Chakraborty, Bioremediation of acid mine drainage in constructed wetlands: aspect of vegetation (Typha latifolia), loading rate and metal recovery. Miner. Eng. 171(July), 107083 (2021). https://doi.org/10.1016/j.mineng.2021.107083

  89. C. Maucieri, A.C. Barbera, J. Vymazal, M. Borin, A review on the main affecting factors of greenhouse gases emission in constructed wetlands. Agric. Meteorol. 236, 175–193 (2017). https://doi.org/10.1016/j.agrformet.2017.01.006

    Article  Google Scholar 

  90. F. Bavandpour, Y. Zou, Y. He, T. Saeed, Y. Sun, G. Sun, Removal of dissolved metals in wetland columns filled with shell grits and plant biomass. Chem. Eng. J. 331(August 2017), 234–241 (2018). https://doi.org/10.1016/j.cej.2017.08.112

  91. H. Wang, M. Zhang, J. Xue, Q. Lv, J. Yang, X. Han, Performance and microbial response in a multi-stage constructed wetland microcosm co-treating acid mine drainage and domestic wastewater. J. Environ. Chem. Eng. 9(6) (2021). https://doi.org/10.1016/j.jece.2021.106786

  92. C.J. Gandy, J.E. Davis, P.H.A. Orme, H.A.B. Potter, A.P. Jarvis, Metal removal mechanisms in a short hydraulic residence time subsurface flow compost wetland for mine drainage treatment. Ecol. Eng. 97, 179–185 (2016). https://doi.org/10.1016/j.ecoleng.2016.09.011

    Article  Google Scholar 

  93. S. Singh, S. Chakraborty, Performance of organic substrate amended constructed wetland treating acid mine drainage (AMD) of North-Eastern India. J. Hazard. Mater. 397(April), 122719 (2020). https://doi.org/10.1016/j.jhazmat.2020.122719

  94. S. Singh, S. Chakraborty, Zinc removal from highly acidic and sulfate-rich wastewater in horizontal sub-surface constructed wetland. Water Sci. Technol. 84(10–11), 3403–3414 (2021). https://doi.org/10.2166/wst.2021.477

    Article  Google Scholar 

  95. S.N. Jordan, W. Redington, L.B. Holland, Remediation of metal contaminated simulated acid mine drainage using a lab-scale spent mushroom substrate wetland. Water Air Soil Pollut. 232(6) (2021). https://doi.org/10.1007/s11270-021-05158-4

  96. S. Buddhawong, P. Kuschk, J. Mattusch, A. Wiessner, U. Stottmeister, Removal of arsenic and zinc using different laboratory model wetland systems. Eng. Life Sci. 5(3), 247–252 (2005). https://doi.org/10.1002/elsc.200520076

    Article  Google Scholar 

  97. A. Wiessner, P. Kuschk, S. Buddhawong, U. Stottmeister, J. Mattusch, M. Kästner, Effectiveness of various small-scale constructed wetland designs for the removal of iron and zinc from acid mine drainage under field conditions. Eng. Life Sci. 6(6), 584–592 (2006). https://doi.org/10.1002/elsc.200620161

    Article  Google Scholar 

  98. V. Gupta, J. Courtemanche, J. Gunn, N. Mykytczuk, Shallow floating treatment wetland capable of sulfate reduction in acid mine drainage impacted waters in a northern climate. J. Environ. Manage. 263(March), 110351 (2020). https://doi.org/10.1016/j.jenvman.2020.110351

  99. J.D. Kiiskila, D. Sarkar, K.A. Feuerstein, R. Datta, A preliminary study to design a floating treatment wetland for remediating acid mine drainage-impacted water using vetiver grass (Chrysopogon zizanioides). Environ. Sci. Pollut. Res. 24(36), 27985–27993 (2017). https://doi.org/10.1007/s11356-017-0401-8

    Article  Google Scholar 

  100. L. Guo, T.J. Cutright, S. Duirk, Effect of citric acid, rhizosphere bacteria, and plant age on metal uptake in reeds cultured in acid mine drainage. Water Air Soil Pollut. 226(1) (2015). https://doi.org/10.1007/s11270-014-2264-7

  101. T. Borralho, D. Gago, A. Almeida, Study on the application of floating beds of macrophites (vetiveria zizanioides and phragmites Australis), in pilot scale, for the removal of heavy metals from agua forte stream (Alentejo-Portugal). J. Ecol. Eng. 21(3), 153–163 (2020). https://doi.org/10.12911/22998993/118285

    Article  Google Scholar 

  102. V. Gagnon, F. Chazarenc, Y. Comeau, J. Brisson, Influence of macrophyte species on microbial density and activity in constructed wetlands. Water Sci. Technol. 56(3), 249–254 (2007). https://doi.org/10.2166/wst.2007.510

    Article  Google Scholar 

  103. S. Mancini, R. James, E. Cox, J. Rayner, Gravel bed reactors: semi-passive water treatment of metals and inorganics

    Google Scholar 

  104. T.K. Tsukamoto, H.A. Killion, G.C. Miller, Column experiments for microbiological treatment of acid mine drainage: low-temperature, low-pH and matrix investigations, 38, 1405–1418 (2004). https://doi.org/10.1016/j.watres.2003.12.012

  105. E. Sakala, F. Fourie, M. Gomo, G. Madzivire, Natural attenuation of acid mine drainage by various rocks in the Witbank, Ermelo And Highveld coalfields, South Africa. Nat. Resour. Res. (2020). https://doi.org/10.1007/s11053-020-09720-5

    Article  Google Scholar 

  106. S. Lyon, Removal of selenium and nitrate from surface waters using a subsurface microbial filter, 41036(May 2009) (2015). https://doi.org/10.1061/41036(342)580

  107. P.J. Williams et al., Effective bioreduction of hexavalent chromium-contaminated water in fixed-film bioreactors. Water SA 40(3), 549–554 (2014). https://doi.org/10.4314/wsa.v40i3.19

    Article  Google Scholar 

  108. M. Koschorreck et al., Structure and function of the microbial community in an in situ reactor to treat an acidic mine pit lake. FEMS Microbiol. Ecol. 1 (2010). https://doi.org/10.1111/j.1574-6941.2010.00886.x

  109. A. Luek, C. Brock, D.J. Rowan, J.B. Rasmussen, A simplified anaerobic bioreactor for the treatment of selenium-laden discharges from non-acidic, end-pit lakes. Mine Water Environ. 33(4), 295–306 (2014). https://doi.org/10.1007/s10230-014-0296-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Gu .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chidiac, C., Bleasdale-Pollowy, A., Holmes, A., Gu, F. (2024). Ex-Situ Remedies. In: Passive Treatments for Mine Drainage. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-32049-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32049-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32048-4

  • Online ISBN: 978-3-031-32049-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation