In-Situ Remedies

  • Chapter
  • First Online:
Passive Treatments for Mine Drainage

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 110 Accesses

Abstract

In situ remedies refer to processes that treat mine drainage at the source, whether directly adding amendments as in-pit treatments or backfilling old mining pits to create in situ bioreactors (e.g., saturated rock fills). In-pit treatments can be further subdivided by the following amendment types and removal mechanisms: alkaline; adsorptive; biological, or mixed treatments. This section will outline the mechanisms of each technique, current research in their subfield, literature gaps and potential methods to advance each field, with a focus on waste by-products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.M.C.M. Janssen, E.J.M. Temminghoff, In situ metal precipitation in a zinc-contaminated, aerobic sandy aquifer by means of biological sulfate reduction. Environ. Sci. Technol. 38, 4002–4011 (2004). https://doi.org/10.1021/es030131a

    Article  Google Scholar 

  2. J. Dong, B. Li, Q. Bao, In situ reactive zone with modified Mg(OH)2 for remediation of heavy metal polluted groundwater: immobilization and interaction of Cr(III), Pb(II) and Cd(II). J. Contam. Hydrol. 199, 50–57 (2017). https://doi.org/10.1016/j.jconhyd.2017.02.005

    Article  Google Scholar 

  3. L.J.J. Catalan, G. Yin, Comparison of calcite to quicklime for amending partially oxidized sulfidic mine tailings before flooding, 6

    Google Scholar 

  4. G. Kaur, S.J. Couperthwaite, B.W. Hatton-Jones, G.J. Millar, Alternative neutralisation materials for acid mine drainage treatment. J. Water Process Eng. 22, 46–58 (2018). https://doi.org/10.1016/j.jwpe.2018.01.004

    Article  Google Scholar 

  5. Z. Diao, T. Shi, S. Wang et al., Silane-based coatings on the pyrite for remediation of acid mine drainage. Water Res. 47, 4391–4402 (2013). https://doi.org/10.1016/j.watres.2013.05.006

    Article  Google Scholar 

  6. J.L. Huisman, G. Schouten, C. Schultz, Biologically produced sulphide for purification of process streams, effluent treatment and recovery of metals in the metal and mining industry. Hydrometallurgy 83, 106–113 (2006). https://doi.org/10.1016/j.hydromet.2006.03.017

    Article  Google Scholar 

  7. D.B. Johnson, K.B. Hallberg, Acid mine drainage remediation options: a review. Sci. Total Environ. 338, 3–14 (2005). https://doi.org/10.1016/j.scitotenv.2004.09.002

    Article  Google Scholar 

  8. G.B. Douglas, Contaminant removal from acidic mine pit water via in situ hydrotalcite formation. Appl. Geochem. 51, 15–22 (2014). https://doi.org/10.1016/j.apgeochem.2014.09.005

    Article  Google Scholar 

  9. A. Othman, A. Sulaiman, S.K. Sulaiman, Carbide lime in acid mine drainage treatment. J. Water Process Eng. 15, 31–36 (2017). https://doi.org/10.1016/j.jwpe.2016.06.006

    Article  Google Scholar 

  10. M. Mahedi, A.Y. Dayioglu, B. Cetin, S. Jones, Remediation of acid mine drainage with recycled concrete aggregates and fly ash. Environ. Geotech. 1–14 (2020). https://doi.org/10.1680/jenge.19.00150

  11. Z.T. Abd Ali, L.A. Naji, S.A.A.A.N. Almuktar et al., Predominant mechanisms for the removal of nickel metal ion from aqueous solution using cement kiln dust. J. Water Process Eng. 33, 101033 (2020). https://doi.org/10.1016/j.jwpe.2019.101033

    Article  Google Scholar 

  12. B.J. Priatmadi, M. Septiana, R. Mulyawan, A.R. Saidy, Increases in pH of acid mine drainage with coal fly-ash application. IOP Conf. Ser. Earth Environ. Sci. 976 (2022). https://doi.org/10.1088/1755-1315/976/1/012020

  13. M. Roulia, D. Alexopoulos, G. Itskos, C. Vasilatos, Lignite fly ash utilization for acid mine drainage neutralization and clean-up. Cleaner Mater. 6, 100142 (2022). https://doi.org/10.1016/J.CLEMA.2022.100142

    Article  Google Scholar 

  14. A.A.S. Tigue, J.M.S. Catapang, C.S.N. Chang et al., Synthesis of pervious geopolymer from coal fly ash and bagasse fly ash for copper removal. Chem. Eng. Trans. 88 (2021). https://doi.org/10.3303/CET2188136

  15. J.N. Zvimba, N. Siyakatshana, M. Mathye, Passive neutralization of acid mine drainage using basic oxygen furnace slag as neutralization material: experimental and modelling. Water Sci. Technol. 75, 1014–1024 (2017). https://doi.org/10.2166/wst.2016.579

    Article  Google Scholar 

  16. A. Navarro, M.I. Martínez da Matta, Application of magnesium oxide for metal removal in mine water treatment. Sustainability 14, 15857 (2022). https://doi.org/10.3390/SU142315857

  17. V. Masindi, M.M. Ramakokovhu, M.S. Osman, M. Tekere, Advanced application of BOF and SAF slags for the treatment of acid mine drainage (AMD): a comparative study. Mater. Today Proc. 38, 934–941 (2021). https://doi.org/10.1016/j.matpr.2020.05.422

    Article  Google Scholar 

  18. N.T. Sithole, F. Ntuli, F. Okonta, Synthesis and evaluation of basic oxygen furnace slag based geopolymers for removal of metals and sulphates from acidic industrial effluent-column study. J. Water Process Eng. 37, 101518 (2020). https://doi.org/10.1016/j.jwpe.2020.101518

    Article  Google Scholar 

  19. G. Kaur, S.J. Couperthwaite, G.J. Millar, Enhanced removal of Mn (II) from solution by thermally activated Bayer precipitates. Miner. Eng. 134, 166–175 (2019). https://doi.org/10.1016/j.mineng.2019.01.023

    Article  Google Scholar 

  20. F. Frau, R. Atzori, C. Ardau et al., A two-step pH control method to remove divalent metals from near-neutral mining and metallurgical waste drainages by inducing the formation of layered double hydroxide. J. Environ. Manage. 271, 111043 (2020). https://doi.org/10.1016/j.jenvman.2020.111043

    Article  Google Scholar 

  21. A. Kastyuchik, A. Karam, M. Aïder, Effectiveness of alkaline amendments in acid mine drainage remediation. Environ. Technol. Innov. 6, 49–59 (2016). https://doi.org/10.1016/j.eti.2016.06.001

    Article  Google Scholar 

  22. I.L. Calugaru, S. Etteieb, S. Magdouli, K. Kaur Brar, Efficiency of thermally activated eggshells for acid mine drainage treatment in cold climate. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. (2022). https://doi.org/10.1080/10934529.2022.2027699

    Article  Google Scholar 

  23. A.A. Bogush, C. Dabu, V.D. Tikhova et al., Biomass ashes for acid mine drainage remediation. Waste Biomass Valorization 11, 4977–4989 (2020). https://doi.org/10.1007/s12649-019-00804-9

    Article  Google Scholar 

  24. P.T. Abongwa, E.A. Atekwana, J.O. Puckette, Hydrogeochemical investigation of metal evolution in circum-neutral mine discharge. Water Air Soil Pollut. 231 (2020). https://doi.org/10.1007/s11270-020-04542-w

  25. V. Masindi, M.W. Gitari, H. Tutu, M. de Beer, Fate of inorganic contaminants post treatment of acid mine drainage by cryptocrystalline magnesite: complimenting experimental results with a geochemical model. J. Environ. Chem. Eng. 4, 4846–4856 (2016). https://doi.org/10.1016/j.jece.2016.03.020

    Article  Google Scholar 

  26. A. García-Valero, S. Martínez-Martínez, A. Faz et al., Environmentally sustainable acid mine drainage remediation: use of natural alkaline material. J. Water Process Eng. 33, 101064 (2020). https://doi.org/10.1016/j.jwpe.2019.101064

    Article  Google Scholar 

  27. F. Plaza, Y. Wen, H. Perone et al., Acid rock drainage passive remediation: potential use of alkaline clay, optimal mixing ratio and long-term impacts. Sci. Total Environ. 576, 572–585 (2017). https://doi.org/10.1016/j.scitotenv.2016.10.076

    Article  Google Scholar 

  28. F. Plaza, Y. Wen, X. Liang, Acid rock drainage passive remediation using alkaline clay: hydro-geochemical study and impacts of vegetation and sand on remediation. Sci. Total Environ. 637–638, 1262–1278 (2018). https://doi.org/10.1016/j.scitotenv.2018.05.014

    Article  Google Scholar 

  29. C.O.A. Turingan, D.J.A. Fabella, K.A.N. Sadol et al., Comparing the performance of low-grade nickel ore and limestone for treatment of synthetic acid mine drainage. Asia-Pac. J. Chem. Eng. 15, e2457 (2020). https://doi.org/10.1002/apj.2457

    Article  Google Scholar 

  30. A. Merchichi, M.O. Hamou, M. Edahbi et al., Passive treatment of acid mine drainage from the Sidi-Kamber mine wastes (Mediterranean coastline, Algeria) using neighbouring phosphate material from the Djebel Onk mine. Sci. Total Environ. 807, 151002 (2022). https://doi.org/10.1016/J.SCITOTENV.2021.151002

    Article  Google Scholar 

  31. K.K. Kefeni, B.B. Mamba, Charcoal ash leachate and its sparingly soluble residue for acid mine drainage treatment: waste for pollution remediation and dual resource recovery. J. Clean. Prod. 320, 128717 (2021). https://doi.org/10.1016/J.JCLEPRO.2021.128717

    Article  Google Scholar 

  32. S.F. Araujo, C.L. Caldeira, V.S.T. Ciminelli et al., Basic oxygen furnace sludge to treat industrial arsenic- and sulfate-rich acid mine drainage. Environ. Sci. Pollut. Res. 1, 3 (2022). https://doi.org/10.1007/s11356-021-18120-y

    Article  Google Scholar 

  33. B. Prasad, H. Kumar, Treatment of lignite mine water with lignite fly ash and its zeolite. Mine Water Environ. 38, 24–29 (2019). https://doi.org/10.1007/s10230-018-00570-5

    Article  Google Scholar 

  34. V. Rey, C.A. Ríos, L.Y. Vargas, T.M. Valente, Use of natural zeolite-rich tuff and siliceous sand for mine water treatment from abandoned gold mine tailings. J. Geochem. Explor. 220, 106660 (2021). https://doi.org/10.1016/j.gexplo.2020.106660

    Article  Google Scholar 

  35. R. Carrillo-González, B.G. Gatica García, M. Del et al., Trace elements adsorption from solutions and acid mine drainage using agricultural by-products. Soil Sed. Contam. Int. J. 31, 348–366 (2021). https://doi.org/10.1080/15320383.2021.1942430

    Article  Google Scholar 

  36. R. Barthen, M.L.K. Sulonen, S. Peräniemi et al., Removal and recovery of metal ions from acidic multi-metal mine water using waste digested activated sludge as biosorbent. Hydrometallurgy 207, 105770 (2022). https://doi.org/10.1016/J.HYDROMET.2021.105770

    Article  Google Scholar 

  37. T.A. Hughes, N.F. Gray, O. Sánchez Guillamón, Removal of metals and acidity from acid mine drainage using liquid and dried digested sewage sludge and cattle slurry. Mine Water Environ. 32, 108–120 (2013). https://doi.org/10.1007/s10230-013-0217-9

    Article  Google Scholar 

  38. D. Richard, A. Mucci, C.M. Neculita, G.J. Zagury, Comparison of organic materials for the passive treatment of synthetic neutral mine drainage contaminated by nickel: short- and medium-term batch experiments. Appl. Geochem. 123, 104772 (2020). https://doi.org/10.1016/j.apgeochem.2020.104772

    Article  Google Scholar 

  39. J.S. Clemente, S. Beauchemin, Y. Thibault et al., Differentiating inorganics in biochars produced at commercial scale using principal component analysis. ACS Omega 3, 6931–6944 (2018). https://doi.org/10.1021/acsomega.8b00523

    Article  Google Scholar 

  40. X. Tan, Y. Liu, G. Zeng et al., Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125, 70–85 (2015)

    Article  Google Scholar 

  41. P. He, Y. Liu, L. Shao et al., Particle size dependence of the physicochemical properties of biochar. Chemosphere 212, 385–392 (2018). https://doi.org/10.1016/j.chemosphere.2018.08.106

    Article  Google Scholar 

  42. A.G. Alghamdi, A. Alkhasha, H.M. Ibrahim, Effect of biochar particle size on water retention and availability in a sandy loam soil. J. Saudi Chem. Soc. 24, 1042–1050 (2020). https://doi.org/10.1016/j.jscs.2020.11.003

    Article  Google Scholar 

  43. T. Bandara, J. Xu, I.D. Potter et al., Mechanisms for the removal of Cd(II) and Cu(II) from aqueous solution and mine water by biochars derived from agricultural wastes. Chemosphere 254, 126745 (2020). https://doi.org/10.1016/j.chemosphere.2020.126745

    Article  Google Scholar 

  44. F.L. Braghiroli, H. Bouafif, C.M. Neculita, A. Koubaa, Performance of physically and chemically activated biochars in copper removal from contaminated mine effluents. Water Air Soil. Pollut. 230, 178 (2019). https://doi.org/10.1007/s11270-019-4233-7

    Article  Google Scholar 

  45. D.T. Hopkins, S. Macquarrie, K.A. Hawboldt, Removal of copper from sulfate solutions using biochar derived from crab processing by-product. J. Environ. Manage. 303, 114270 (2022). https://doi.org/10.1016/j.jenvman.2021.114270

    Article  Google Scholar 

  46. T. Falayi, F. Ntuli, Removal of heavy metals and neutralisation of acid mine drainage with un-activated attapulgite. J. Ind. Eng. Chem. 20, 1285–1292 (2014). https://doi.org/10.1016/j.jiec.2013.07.007

    Article  Google Scholar 

  47. H.R. Chen, D.R. Zhang, Q. Li et al., Release and fate of As mobilized via bio-oxidation of arsenopyrite in acid mine drainage: Importance of As/Fe/S speciation and As(III) immobilization. Water Res. 223, 118957 (2022). https://doi.org/10.1016/J.WATRES.2022.118957

    Article  Google Scholar 

  48. W. Xu, H. Yang, Q. Mao et al., Removal of heavy metals from acid mine drainage by red mud-based geopolymer pervious concrete: batch and long-term column studies. Polymers (Basel) 14, 5355 (2022). https://doi.org/10.3390/POLYM14245355/S1

    Article  Google Scholar 

  49. M. Levio-Raiman, G. Briceño, H. Schalchli et al., Alternative treatment for metal ions removal from acid mine drainage using an organic biomixture as a low cost adsorbent. Environ. Technol. Innov. 24, 101853 (2021). https://doi.org/10.1016/j.eti.2021.101853

    Article  Google Scholar 

  50. S. Park, M. Lee, Removal of copper and cadmium in acid mine drainage using Ca-alginate beads as biosorbent. Geosci. J. 21, 373–383 (2017). https://doi.org/10.1007/s12303-016-0050-9

    Article  Google Scholar 

  51. M. Li, Y. Huang, Y. Yang et al., Heavy metal ions removed from imitating acid mine drainages with a thermoacidophilic archaea: acidianus manzaensis YN25. Ecotoxicol. Environ. Saf. 190, 110084 (2020). https://doi.org/10.1016/j.ecoenv.2019.110084

    Article  Google Scholar 

  52. S.K. Hwang, E.H. Jho, Heavy metal and sulfate removal from sulfate-rich synthetic mine drainages using sulfate reducing bacteria. Sci. Total Environ. 635, 1308–1316 (2018). https://doi.org/10.1016/j.scitotenv.2018.04.231

    Article  Google Scholar 

  53. C.D. McCullough, M.A. Lund, Bioremediation of acidic and metalliferous drainage (AMD) through organic carbon amendment by municipal sewage and green waste. J. Environ. Manage. 92, 2419–2426 (2011). https://doi.org/10.1016/j.jenvman.2011.04.011

    Article  Google Scholar 

  54. R.N. Kumar, C.D. McCullough, M.A. Lund, Upper and lower concentration thresholds for bulk organic substrates in bioremediation of acid mine drainage. Mine Water Environ. 32, 285–292 (2013). https://doi.org/10.1007/s10230-013-0242-8

    Article  Google Scholar 

  55. D.G. Grubb, D.G. Landers, P.A. Guerra et al., Sugarcane bagasse as a microbial host media for the passive treatment of acid mine drainage. J. Environ. Eng. 144, 4018108 (2018). https://doi.org/10.1061/(ASCE)EE.1943-7870.0001400

    Article  Google Scholar 

  56. G.J. Zagury, V.I. Kulnieks, C.M. Neculita, Characterization and reactivity assessment of organic substrates for sulphate-reducing bacteria in acid mine drainage treatment. Chemosphere 64, 944–954 (2006). https://doi.org/10.1016/j.chemosphere.2006.01.001

    Article  Google Scholar 

  57. M. Syazwan, M. Halim, A.H. Ibrahim et al., Iron removal efficiency in synthetic acid mine drainage (AMD) treatment using peat soil. Lect. Notes Civil Eng. 214, 297–303 (2022). https://doi.org/10.1007/978-981-16-7920-9_35

    Article  Google Scholar 

  58. C. Oporto, G. Baya, C. Vandecasteele, Efficiencies of available organic mixtures for the biological treatment of highly acidic-sulphate rich drainage of the San Jose mine. Bolivia 42, 1283–1291 (2019). https://doi-org.myaccess.library.utoronto.ca/101080/0959333020191665109. https://doi.org/10.1080/09593330.2019.1665109

  59. S.N. Muhammad, F.M. Kusin, M.S. Md Zahar et al., Passive bioremediation technology incorporating lignocellulosic spent mushroom compost and limestone for metal- and sulfate-rich acid mine drainage. Environ. Technol. 38, 2003–2012 (2017). https://doi.org/10.1080/09593330.2016.1244568

    Article  Google Scholar 

  60. R. Martínez-Macias M del, Ma.A. Correa-Murrieta, Y. Villegas-Peralta et al., Uptake of copper from acid mine drainage by the microalgae Nannochloropsis oculata. Environ. Sci. Pollut. Res. 26, 6311–6318 (2019). https://doi.org/10.1007/s11356-018-3963-1

  61. L.L. Neil, C.D. McCullough, M.A. Lund et al., Toxicity of acid mine pit lake water remediated with limestone and phosphorus. Ecotoxicol. Environ. Saf. 72, 2046–2057 (2009). https://doi.org/10.1016/j.ecoenv.2009.08.013

    Article  Google Scholar 

  62. T.C.E. Dessouki, J.J. Hudson, B.R. Neal, M.J. Bogard, The effects of phosphorus additions on the sedimentation of contaminants in a uranium mine pit-lake. Water Res. 39, 3055–3061 (2005). https://doi.org/10.1016/j.watres.2005.05.009

    Article  Google Scholar 

  63. O. Paulsson, A. Widerlund, Algal nutrient limitation and metal uptake experiment in the Åkerberg pit lake, northern Sweden. Appl. Geochem. 11 (2021)

    Google Scholar 

  64. G.W. Poling, C.A. Pelletier, D. Muggli et al., Field studies of semi-passive biogeochemical treatment of acid rock drainage at the island copper mine pit lake (2003). https://doi.org/10.7939/r3-rgym-s881

  65. A. Luek, D.J. Rowan, J.B. Rasmussen, N-P fertilization stimulates anaerobic selenium reduction in an end-pit lake. Sci. Rep. 7, 10502 (2017). https://doi.org/10.1038/s41598-017-11095-2

    Article  Google Scholar 

  66. V. Preuss, M. Horn, M. Koschorreck et al., In-Lake bioreactors for the treatment of acid mine water in pit lakes. Adv. Mat. Res. 20–21, 271–274 (2007). https://doi.org/10.4028/www.scientific.net/amr.20-21.271

    Article  Google Scholar 

  67. T. Hwang, C.M. Neculita, J.-I. Han, Biosulfides precipitation in weathered tailings amended with food waste-based compost and zeolite. J. Environ. Qual. 41, 1857–1864 (2012). https://doi.org/10.2134/jeq2011.0462

    Article  Google Scholar 

  68. T. Hwang, C.M. Neculita, In situ immobilization of heavy metals in severely weathered tailings amended with food waste-based compost and zeolite. Water Air Soil. Pollut. 224, 1388 (2013). https://doi.org/10.1007/s11270-012-1388-x

    Article  Google Scholar 

  69. X. Guo, Z. Hu, S. Fu et al., Experimental study of the remediation of acid mine drainage by Maifan stones combined with SRB. PLoS ONE 17, e0261823 (2022). https://doi.org/10.1371/JOURNAL.PONE.0261823

    Article  Google Scholar 

  70. G. Chai, D. Wang, Y. Zhang et al., Effects of organic substrates on sulfate-reducing microcosms treating acid mine drainage: performance dynamics and microbial community comparison. J. Environ. Manage. 330, 117148 (2023). https://doi.org/10.1016/J.JENVMAN.2022.117148

    Article  Google Scholar 

  71. S. Jensen, J. Foster, M.-C. Noel, M. Bartlett, Mine design for in-situ control of selenium and nitrate (2018)

    Google Scholar 

  72. L.B. Kirk, C. Hwang, C. Ertuna et al., Column tests of selenium biomineraliation in support of saturated rockfill design. in Mine Water and Circular Economy (vol. II) (2017), pp 1191–1195

    Google Scholar 

  73. S.G. Deen, V.F. Bondici, J. Essilfie-Dughan et al., Biotic and abiotic sequestration of selenium in anoxic coal waste rock. Mine Water. Environ. 37, 825–838 (2018). https://doi.org/10.1007/s10230-018-0546-9

    Article  Google Scholar 

  74. M. Bianchin, A. Martin, J. Adams, In-situ immobilization of selenium within the saturated zones of backfilled pits at coal-mine operations

    Google Scholar 

  75. A. Luek, C. Brock, D.J. Rowan, J.B. Rasmussen, A simplified anaerobic bioreactor for the treatment of selenium-laden discharges from non-acidic, end-pit lakes. Mine Water Environ. 33, 295–306 (2014). https://doi.org/10.1007/s10230-014-0296-2

    Article  Google Scholar 

  76. S. **, P.H. Fallgren, J.M. Morris, J.S. Cooper, Source treatment of acid mine drainage at a backfilled coal mine using remote sensing and biogeochemistry. Water Air Soil Pollut. 188, 205–212 (2008). https://doi.org/10.1007/s11270-007-9536-4

    Article  Google Scholar 

  77. J.D. Jenkins, Role of flow and organic carbon on acid mine drainage remediation in waste rock (2001)

    Google Scholar 

  78. C. Hwang, L.B. Kirk, B. Peyton, Changes in microbial community structure in response to changing oxygen stress in column tests of denitrification and selenium reduction (2017)

    Google Scholar 

  79. L.B. Kirk, C. Hwang, C. Ertuna et al., Column tests of selenium biomineralization in support of saturated rockfill design (2017)

    Google Scholar 

  80. A. Martin, R. Goldblatt, J. Stockwell, In situ attenuation of selenium in coal mine flooded pits (2015)

    Google Scholar 

  81. L.M.B. Kirk, In Situ Microbial Reduction of Selenate in Backfilled Phosphate Mine Waste (Montana State University, S.E. IDAHO, 2014)

    Google Scholar 

  82. MARIAAN WEBB, Teck doubles water treatment capacity at Elkview, in Mining Weekly (2021). https://www.miningweekly.com/article/teck-doubles-water-treatment-capacity-at-elkview-2021-02-17/rep_id:3650. Accessed 29 Nov 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Gu .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chidiac, C., Bleasdale-Pollowy, A., Holmes, A., Gu, F. (2024). In-Situ Remedies. In: Passive Treatments for Mine Drainage. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-32049-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32049-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32048-4

  • Online ISBN: 978-3-031-32049-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation