Graph-Based Disease Prediction in Neuroimaging: Investigating the Impact of Feature Selection

  • Conference paper
  • First Online:
GeNeDis 2022 (GeNeDis 2022)

Abstract

In biomedical machine learning, data often appear in the form of graphs. Biological systems such as protein interactions and ecological or brain networks are instances of applications that benefit from graph representations. Geometric deep learning is an arising field of techniques that has extended deep neural networks to non-Euclidean domains such as graphs. In particular, graph convolutional neural networks have achieved advanced performance in semi-supervised learning in those domains. Over the last years, these methods have gained traction in neuroscience as they could be the key to a deeper understanding in clinical diagnosis at the systems or network level (for an individual brain but also for across a cohort of subjects). As a proof-of-principle, we study and validate a previous implementation of graph-based semi-supervised classification using a ridge classifier and graph convolutional neural networks. The models are trained on population graphs that integrate imaging and phenotypic information. Our analysis employs neuroimaging data of structural and functional connectivity for prediction of neurodevelopmental and neurodegenerative disorders. Here, we particularly study the effect of different strategies to reduce the dimensionality of the neuroimaging features on the graph nodes on the classification performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 213.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 267.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://fcon.1000.projects.nitrc.org/indi/abide/

  2. 2.

    https://adni.loni.usc.edu/

  3. 3.

    www.ftld.de

References

  1. Bisenius S, Mueller K, Diehl-Schmid J, et al (2017) Predicting primary progressive aphasias with support vector machine approaches in structural MRI data. NeuroImage: Clinical 14:334–343. https://doi.org/10.1016/j.nicl.2017.02.003

    Article  PubMed  Google Scholar 

  2. Bellec P, Chu C, Chouinard-Decorte F, Benhajali Y, Margulies D, Craddock R (2017) The Neuro Bureau ADHD-200 Preprocessed repository. NeuroImage 144:275–286. https://doi.org/10.1016/j.neuroimage.2016.06.034

    Article  PubMed  Google Scholar 

  3. Brant-Zawadzki M, Gillan G, Nitz W (1992) MP RAGE: a three-dimensional, T1- weighted, gradient-echo sequence--initial experience in the brain. Radiology 182:769–775. https://doi.org/10.1148/radiology.182.3.1535892

  4. Brown MR, Sidhu GS, Greiner R, et al (2012) ADHD-200 global competition: Diagnosing ADHD using personal characteristic data can outperform resting state fMRI measurements. Frontiers in Systems Neuroscience. https://doi.org/10.3389/fnsys.2012.00069

  5. Chen L (2009) Curse of Dimensionality. Encyclopedia of Database Systems 545–546. https://doi.org/10.1007/978-0-387-39940-9_133

  6. Chen M, Li H, Fan H, et al (2022) Conceptcnn: A novel multi-filter convolutional neural network for the prediction of neurodevelopmental disorders using brain connectome. Medical Physics 49:3171–3184. https://doi.org/10.1002/mp.15545

    Article  PubMed  Google Scholar 

  7. Gao M-S, Tsai F-S, Lee C-C (2020) Learning a phenotypic-attribute attentional brain connectivity embedding for ADHD classification using rs-fMRI. In 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). https://doi.org/10.1109/embc44109.2020.9175789

  8. Ghiassian S, Greiner R, ** P, Brown MR (2016) Using functional or structural magnetic resonance images and personal characteristic data to identify ADHD and autism. PLOS ONE. https://doi.org/10.1371/journal.pone.0166934

  9. Huppertz H, Möller L, Südmeyer M, Hilker R, Hattingen E, Egger K, Amtage F, Respondek G, Stamelou M, Schnitzler A, Pinkhardt E, Oertel W, Knake S, Kassubek J, Höglinger G (2016) Differentiation of neurodegenerative parkinsonian syndromes by volumetric magnetic resonance imaging analysis and support vector machine classification. Movement Disorders 31:1506–1517. https://doi.org/10.1002/mds.26715

    Article  PubMed  Google Scholar 

  10. Jeon H, Oh S (2020) Hybrid-Recursive Feature Elimination for Efficient Feature Selection. Applied Sciences 10:3211. https://doi.org/10.3390/app10093211

    Article  CAS  Google Scholar 

  11. Jolliffe IT, Cadima J (2016) Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374:20150202. https://doi.org/10.1098/rsta.2015.0202

    Article  Google Scholar 

  12. Lampe L, Niehaus S, Huppertz H, Merola A, Reinelt J, Mueller K, Anderl-Straub S, Fassbender K, Fliessbach K, Jahn H, Kornhuber J, Lauer M, Prudlo J, Schneider A, Synofzik M, Danek A, Diehl-Schmid J, Otto M, Villringer A, Egger K, Hattingen E, Hilker-Roggendorf R, Schnitzler A, Südmeyer M, Oertel W, Kassubek J, Höglinger G, Schroeter M (2022) Comparative analysis of machine learning algorithms for multi-syndrome classification of neurodegenerative syndromes. Alzheimer’s Research and Therapy. https://doi.org/10.1186/s13195-022-00983-z

  13. Meyer S, Mueller K, Stuke K, et al (2017) Predicting behavioral variant frontotemporal dementia with pattern classification in multi-center structural MRI Data. NeuroImage: Clinical 14:656–662. https://doi.org/10.1016/j.nicl.2017.02.001

  14. McInnes L, Healy J, Saul N, Großberger L (2018) UMAP: Uniform Manifold Approximation and Projection. Journal of Open Source Software 3:861. https://doi.org/10.21105/joss.00861

    Article  Google Scholar 

  15. Mennes M, Biswal B, Castellanos F, Milham M (2013) Making data sharing work: The FCP/INDI experience. NeuroImage 82:683–691. https://doi.org/10.1016/j.neuroimage.2012.10.064

    Article  PubMed  Google Scholar 

  16. Morehead A, Chantapakul W, Cheng J (2022) Semi-Supervised Graph Learning Meets Dimensionality Reduction. Paper presented at the 2022 International Joint Conference on Neural Networks, 23 March 2022

    Google Scholar 

  17. Otto M, Ludolph A, Landwehrmeyer B, Förstl H, Diehl-Schmid J, Neumann M, Kretzschmar H, Schroeter M, Kornhuber J, Danek A (2011) Konsortium zur Erforschung der frontotemporalen Lobärdegeneration. Der Nervenarzt 82:1002–1005. https://doi.org/10.1007/s00115-011-3261-3

    Article  CAS  PubMed  Google Scholar 

  18. Parisot S, Ktena S, Ferrante E, Lee M, Moreno R, Glocker B, Rueckert D (2017) Spectral Graph Convolutions for Population-Based Disease Prediction. Medical Image Computing and Computer Assisted Intervention-MICCAI 2017 177–185. https://doi.org/10.1007/978-3-319-66179-7_21

    Article  Google Scholar 

  19. Parisot S, Ktena S, Ferrante E, Lee M, Guerrero R, Glocker B, Rueckert D (2018) Disease prediction using graph convolutional networks: Application to Autism Spectrum Disorder and Alzheimer’s disease. Medical Image Analysis 48:117–130. https://doi.org/10.1016/j.media.2018.06.001

    Article  PubMed  Google Scholar 

  20. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825–2830.

    Google Scholar 

  21. Saito Y, Kamagata K, Wijeratne PA, et al (2022) Temporal progression patterns of brain atrophy in corticobasal syndrome and progressive supranuclear palsy revealed by subtype and stage inference (sustain). Frontiers in Neurology. https://doi.org/10.3389/fneur.2022.814768

  22. Tan L, Guo X, Ren S, et al (2017) A computational model for the automatic diagnosis of attention deficit hyperactivity disorder based on Functional Brain Volume. Frontiers in Computational Neuroscience. https://doi.org/10.3389/fncom.2017.00075

  23. Wilson SM, Ogar JM, Laluz V, et al (2009) Automated MRI-based classification of primary progressive aphasia variants. NeuroImage 47:1558–1567. https://doi.org/10.1016/j.neuroimage.2009.05.085

    Article  PubMed  Google Scholar 

  24. Zhang Q, Yang XL, Sun ZK (2022) Classification of Alzheimer’s disease progression based on SMRI using Gray Matter Volume and Lateralization Index. PLOS ONE. https://doi.org/10.1371/journal.pone.0262722

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitra Kiakou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kiakou, D., Adamopoulos, A., Scherf, N. (2023). Graph-Based Disease Prediction in Neuroimaging: Investigating the Impact of Feature Selection. In: Vlamos, P. (eds) GeNeDis 2022. GeNeDis 2022. Advances in Experimental Medicine and Biology, vol 1424. Springer, Cham. https://doi.org/10.1007/978-3-031-31982-2_24

Download citation

Publish with us

Policies and ethics

Navigation