Exploring the Driven Service Quality Dimensions for Higher Education Based on MCDM Analysis

  • Conference paper
  • First Online:
4th International Conference on Artificial Intelligence and Applied Mathematics in Engineering (ICAIAME 2022)

Abstract

Increasing competition in higher education forces universities to take steps to improve the quality of service. Pre-determining crucial factors in the provision of educational services is significant to ensure student satisfaction, and thus to strengthen the bond of students with the university. The perception of students and employers about the quality of the education service offered is a key factor in positioning students, who are future employees, in the labor market. The agility of university services plays a key role in the continuation of education and training activities, especially in challenging situations such as pandemics. At this point, different perceptions about the quality of the service emerge for different universities. In this study, the problem of evaluating the service quality of universities is discussed. The aim is to find out the factors that involve all stakeholders in the evaluation process and prioritize the factors based on stakeholders’ belief in overall service quality. In this context, the traditional dimensions of service quality models were examined, and the model was extended to address comprehensive service quality dimensions for higher educations that are especially to be used in extraordinary processes such as pandemics. Then, the weights of the determined service quality evaluation dimensions were determined by a multi-criteria decision making (MCDM) method, considering the expert opinions. At this point, Pythagorean fuzzy sets were preferred to effectively reflect experts uncertainty that the consulted may experience in the decision-making process. With this study, the first service quality model is introduced in the literature for higher education institutions, supported by a fuzzy MCDM method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 223.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 279.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 279.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Labas, I., Darabos, E., Nagy, T.O.: Competitiveness - higher education. Stud. Univ. Arad. “Vasile Goldis” Arad – Econ. Ser. 26(1), 11–25 (2016)

    Google Scholar 

  2. Bileviciute, E., Draksas, R., Nevera, A., Vainiūte, M.: Competitiveness in higher education: the case of university management. J. Compet. 11(4), 5–21 (2019)

    Google Scholar 

  3. de Jager, J., Gbadamosi, G.: Predicting students’ satisfaction through service quality inhigher education. Int. J. Manag. Educ. 11(3), 107–118 (2013)

    Article  Google Scholar 

  4. Beltman, S., Mansfield, C.F.: Resilience in education: an introduction. In: Wosnitza, M., Peixoto, F., Beltman, S., Mansfield, C.F. (eds.) Resilience in Education, pp. 3–9. Springer, Cham (2018)

    Chapter  Google Scholar 

  5. Yang, R.: China’s higher education during the covid-19 pandemic: some preliminary observations. High. Educ. Res. Dev. 39(7), 1317–1321 (2020)

    Article  Google Scholar 

  6. Jena, P.K.: Impact of pandemic covid-19 on education in India. Int. J. Curr. Res. 12(07), 12582–12586 (2020)

    Google Scholar 

  7. Davey, B., Parker, K.R.: Technology in education: an agile systems approach. In: Proceedings of the 2010 InSITE Conference, pp. 297–306 (2010)

    Google Scholar 

  8. DeShields, O.W., Kara, A., Kaynak, E.: Determinants of business student satisfaction and retention in higher education: applying Herzberg’s two-factor theory. Int. J. Educ. Manag. 19(2), 128–139 (2005)

    Article  Google Scholar 

  9. Zineldin, M., Akdag, H.C., Vasicheva, V.: Assessing quality in higher education: new criteria for evaluating students’ satisfaction. Qual. High. Educ. 17(2), 231–243 (2011)

    Article  Google Scholar 

  10. Douglas, J.A., Douglas, A., McClelland, R.J., Davies, J.: Understanding student satisfaction and dissatisfaction: an interpretive study in the UK higher education context. Stud. High. Educ. 40(2), 329–349 (2015)

    Article  Google Scholar 

  11. Goyal, A., Gupta, S., Chauhan, A.K.: Prioritizing the factors determining the quality in higher educational institutions—an application of fuzzy analytic hierarchy process. J. Public Aff. 22(4), e2647 (2021)

    Google Scholar 

  12. Abdullah, F.: The development of HEdPERF: a new measuring instrument of service quality for the higher education sector. Int. J. Consum. Stud. 30(6), 569–581 (2006)

    Article  Google Scholar 

  13. Teeroovengadum, V., Kamalanabhan, T.J., Seebaluck, A.K.: Measuring service quality in higher education: development of a hierarchical model (HESQUAL). Qual. Assur. Educ. 24(2), 244–258 (2016)

    Article  Google Scholar 

  14. Bozbay, Z., Baghirov, F., Zhang, Y., Rasli, A., Karakasoglu, M.: International students’ service quality evaluations towards Turkish universities. Qual. Assur. Educ. 28(3), 151–164 (2020)

    Article  Google Scholar 

  15. Sohail, M.S., Hasan, M.: Students’ perceptions of service quality in Saudi universities: the SERVPERF model. Learn. Teach. High. Educ. Gulf Perspect. 17(1), 54–66 (2021)

    Article  Google Scholar 

  16. Keršulienė, V., Zavadskas, E.K., Turskis, Z.: Selection of rational dispute resolution method by applying new step-wise weight assessment ratio analysis (SWARA). J. Bus. Econ. Manag. 11(2), 243–258 (2010)

    Article  Google Scholar 

  17. Raad, N.G., Rajendran, S., Salimi, S.: A novel three-stage fuzzy GIS-MCDA approach to the dry port site selection problem: a case study of Shahid Rajaei Port in Iran. Comput. Ind. Eng. 168, 108112 (2022)

    Article  Google Scholar 

  18. Dahooie, J.H., Estiri, M., Janmohammadi, M., Zavadskas, E.K., Turskis, Z.: A novel advertising media selection framework for online games in an intuitionistic fuzzy environment. Oeconomia Copernicana 13(1), 109–150 (2022)

    Article  Google Scholar 

  19. Karbassi Yazdi, A., Spulbar, C., Hanne, T., Birau, R.: Ranking performance indicators related to banking by using hybrid multicriteria methods in an uncertain environment: a case study for Iran under covid-19 conditions. Syst. Sci. Control Eng. 10(1), 166–180 (2022)

    Article  Google Scholar 

  20. Wu, X., Dinçer, H., Yüksel, S.: Analysis of crowdfunding platforms for microgrid project investors via a q-rung orthopair fuzzy hybrid decision-making approach. Financ. Innov. 8(1) (2022)

    Google Scholar 

  21. Rani, P., Mishra, A.R., Mardani, A., Cavallaro, F., Ĺ treimikiene, D., Khan, S.A.R.: Pythagorean fuzzy SWARA-VIKOR framework for performance evaluation of solar panel selection. Sustain. 12(10) (2020)

    Google Scholar 

  22. He, J., Huang, Z., Mishra, A.R., Alrasheedi, M.: Develo** a new framework for conceptualizing the emerging sustainable community-based tourism using an extended interval-valued Pythagorean fuzzy SWARA-MULTIMOORA. Technol. Forecast. Soc. Change 171, 120955 (2021)

    Article  Google Scholar 

  23. Cui, Y., Liu, W., Rani, P., Alrasheedi, M.: Internet of Things (IoT) adoption barriers for the circular economy using Pythagorean fuzzy SWARA-CoCoSo decision-making approach in the manufacturing sector. Technol. Forecast. Soc. Change 171, 120951 (2021)

    Article  Google Scholar 

  24. Ramya, L., Narayanamoorthy, S., Kalaiselvan, S., Kureethara, J.V., Annapoorani, V., Kang, D.: A congruent approach to normal wiggly interval-valued hesitant Pythagorean fuzzy set for thermal energy storage technique selection applications. Int. J. Fuzzy Syst. 23(6), 1581–1599 (2021)

    Article  Google Scholar 

  25. Alipour, M., Hafezi, R., Rani, P., Hafezi, M., Mardani, A.: A new Pythagorean fuzzy-based decision-making method through entropy measure for fuel cell and hydrogen components supplier selection. Energy 234, 121208 (2021)

    Article  Google Scholar 

  26. Alrasheedi, M., Mardani, A., Mishra, A.R., Rani, P., Loganathan, N.: An extended framework to evaluate sustainable suppliers in manufacturing companies using a new Pythagorean fuzzy entropy-SWARA-WASPAS decision-making approach. J. Enterp. Inf. Manag. 35(2), 333–357 (2022)

    Article  Google Scholar 

  27. Kamali Saraji, M., Streimikiene, D., Ciegis, R.: A novel Pythagorean fuzzy-SWARA-TOPSIS framework for evaluating the EU progress towards sustainable energy development. Environ. Monit. Assess. 194(1), 1–19 (2021)

    Google Scholar 

  28. Yager, R.R.: Pythagorean fuzzy subsets. In: Proceedings of the 2013 Joint IFSA World Congress and NAFIPS Annual Meeting, IFSA/NAFIPS 2013, pp. 57–61 (2013)

    Google Scholar 

  29. Ayyildiz, E., Taskin Gumus, A.: Pythagorean fuzzy AHP based risk assessment methodology for hazardous material transportation: an application in Istanbul. Environ. Sci. Pollut. Res. 28(27), 35798–35810 (2021)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by Karadeniz Technical University Scientific Research Projects Coordination Unit. Project Number: FAY-2022–10123.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleyna Sahin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sahin, A., Murat, M., Imamoglu, G., Buyukozkan, K., Ayyildiz, E. (2023). Exploring the Driven Service Quality Dimensions for Higher Education Based on MCDM Analysis. In: Hemanth, D.J., Yigit, T., Kose, U., Guvenc, U. (eds) 4th International Conference on Artificial Intelligence and Applied Mathematics in Engineering. ICAIAME 2022. Engineering Cyber-Physical Systems and Critical Infrastructures, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-031-31956-3_16

Download citation

Publish with us

Policies and ethics

Navigation