Abstract

Three major modes of cultivation are discussed in the following section: photoautotrophic, heterotrophic, and mixotrophic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acién Fernández, F. G., Fernández Sevilla J. M., Molina Grima E. (2013). Photobioreactors for the production of microalgae. Rev Environ Sci Biotechnol, 12(2), 131–151.

    Google Scholar 

  • Alazaiza, M. Y., Albahnasawi, A., Al Maskari, T., Abujazar, M. S. S., Bashir, M. J., Nassani, D. E., & Abu Amr, S. S. (2023). Biofuel production using cultivated algae: Technologies, economics, and its environmental impacts. Energies, 16(3), 1316.

    Article  CAS  Google Scholar 

  • Andersen, R. A., & Kawachi, M. (2005). Microalgae isolation techniques. Algal culturing techniques, 83, 92.

    Google Scholar 

  • Andrade, M. R., & Costa, J. A. V. (2007). Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate. Aquaculture, 264(1), 130–134.

    Article  Google Scholar 

  • Apel, A. C., & Weuster-Botz, D. (2015). Engineering solutions for open microalgae mass cultivation and realistic indoor simulation of outdoor environments. Bioprocess and Biosystems Engineering, 38, 995–1008.

    Article  CAS  Google Scholar 

  • Borowitzka, M. A. (1997). Microalgae for aquaculture: opportunities and constraints. Journal of Applied Phycology, 9, 393–401.

    Article  Google Scholar 

  • Brennan, L., & Owende, P. (2010). Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14(2), 557–577.

    Article  CAS  Google Scholar 

  • Cai, Y., Liu, Y., Liu, T., Gao, K., Zhang, Q., Cao, L., Wang, Y., Wu, X., Zheng, H., Peng, H., & Ruan, R. (2021). Heterotrophic cultivation of Chlorella vulgaris using broken rice hydrolysate as carbon source for biomass and pigment production. Bioresource Technology, 323, 124607.

    Article  CAS  Google Scholar 

  • Chaisutyakorn, P., Praiboon, J., & Kaewsuralikhit, C. (2018). The effect of temperature on growth and lipid and fatty acid composition on marine microalgae used for biodiesel production. Journal of Applied Phycology, 30(1), 37–45.

    Article  CAS  Google Scholar 

  • Cheah, W. Y., Show, P. L., Chang, J.-S., Ling, T. C., & Juan, J. C. (2015). Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresource Technology, 184, 190–201.

    Article  CAS  Google Scholar 

  • Chen, C.-Y., Lee, M.-H., Dong, C.-D., Leong, Y. K., & Chang, J.-S. (2020). Enhanced production of microalgal lipids using a heterotrophic marine microalga Thraustochytrium sp. BM2. Biochemical Engineering Journal, 154, 107429.

    Google Scholar 

  • Chen, F. (1996). High cell density culture of microalgae in heterotrophic growth. Trends in Biotechnology, 14(11), 421–426.

    Article  CAS  Google Scholar 

  • Cheng, J., Yang, Z., Ye, Q., Zhou, J., & Cen, K. (2016). Improving CO2 fixation with microalgae by bubble breakage in raceway ponds with up-down chute baffles. Bioresource Technology, 201, 174–181.

    Article  CAS  Google Scholar 

  • Chew, K. W., Chia, S. R., Show, P. L., Yap, Y. J., Ling, T. C., & Chang, J.-S. (2018). Effects of water culture medium, cultivation systems and growth modes for microalgae cultivation: A review. Journal of the Taiwan Institute of Chemical Engineers, 91, 332–344.

    Article  CAS  Google Scholar 

  • Chisti, Y. (2013). Raceways-based production of algal crude oil. Green, 3(3–4). https://doi.org/10.1515/green-2013-001861

  • Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306.

    Article  CAS  Google Scholar 

  • Choi, Y. Y., Joun, J. M., Lee, J., Hong, M. E., Pham, H.-M., Chang, W. S., & Sim, S. J. (2017). Development of large-scale and economic pH control system for outdoor cultivation of microalgae Haematococcus pluvialis using industrial flue gas. Bioresource Technology, 244, 1235–1244.

    Article  CAS  Google Scholar 

  • Choix, F. J., Bashan, Y., Mendoza, A., & de-Bashan, L. E. (2014). Enhanced activity of ADP glucose pyrophosphorylase and formation of starch induced by Azospirillum brasilense in Chlorella vulgaris. Journal of Biotechnology, 177, 22–34.

    Google Scholar 

  • Costa, J. A. V., Freitas, B. C. B., Santos, T. D., Mitchell, B. G., & Morais, M. G. (2019). Open pond systems for microalgal culture. In Biofuels from algae (pp. 199–223). Elsevier.

    Google Scholar 

  • Daneshvar, E., Sik Ok, Y., Tavakoli, S., Sarkar, B., Shaheen, S. M., Hong, H., Luo, Y., Rinklebe, J., Song, H., & Bhatnagar, A. (2021). Insights into upstream processing of microalgae: A review. Bioresource Technology, 329, 124870.

    Article  CAS  Google Scholar 

  • De Swaaf M. E., Sijtsma, L., & Pronk J. T. (2003). High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnol Bioeng, 81(6), 666–672.

    Google Scholar 

  • Dogaris, I., Welch, M., Meiser, A., Walmsley, L., & Philippidis, G. (2015). A novel horizontal photobioreactor for high-density cultivation of microalgae. Bioresource Technology, 198, 316–324.

    Article  CAS  Google Scholar 

  • Eldiehy, K. S., Bardhan, P., Borah, D., Gohain, M., Rather, M. A., Deka, D., & Mandal, M. (2022). A comprehensive review on microalgal biomass production and processing for biodiesel production. Fuel, 324, 124773.

    Article  CAS  Google Scholar 

  • Fernandes, B. D., Mota, A., Ferreira, A., Dragone, G., Teixeira, J. A., & Vicente, A. A. (2014). Characterization of split cylinder airlift photobioreactors for efficient microalgae cultivation. Chemical Engineering Science, 117, 445–454.

    Article  CAS  Google Scholar 

  • Fernández-Linares, L.C., Gutiérrez-Márquez, A., & Guerrero-Barajas, C. (2020). Semi-continuous culture of a microalgal consortium in open ponds under greenhouse conditions using piggery wastewater effluent. Bioresource Technology Reports, 12, 100597.

    Google Scholar 

  • Gao, C., Zhai, Y., Ding, Y., & Wu, Q. (2010). Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Applied Energy, 87(3), 756–761.

    Article  CAS  Google Scholar 

  • Greenwell, H. C., Laurens, L. M. L., Shields, R. J., Lovitt, R. W., & Flynn, K. J. (2010). Placing microalgae on the biofuels priority list: A review of the technological challenges. Journal of the Royal Society, Interface, 7(46), 703–726.

    Article  CAS  Google Scholar 

  • He, Q., Yang, H., & Hu, C. (2016). Culture modes and financial evaluation of two oleaginous microalgae for biodiesel production in desert area with open raceway pond. Bioresource Technology, 218, 571–579.

    Article  CAS  Google Scholar 

  • Ho, S. H., Chen, C. Y., & Chang, J. S. (2012). Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource Technology, 113, 244–252.

    Article  CAS  Google Scholar 

  • Hsieh, C.-H., & Wu, W.-.T. (2009a). A novel photobioreactor with transparent rectangular chambers for cultivation of microalgae. Biochemical Engineering Journal, 46(3), 300–305.

    Google Scholar 

  • Hsieh, C. H., & Wu, W. T. (2009b). Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresource Technology100(17), 3921–3926.

    Google Scholar 

  • Huang, J., Hankamer, B., & Yarnold, J. (2019). Design scenarios of outdoor arrayed cylindrical photobioreactors for microalgae cultivation considering solar radiation and temperature. Algal Research, 41, 101515.

    Article  Google Scholar 

  • Huang, J., Qu, X., Wan, M., Ying, J., Li, Y., Zhu, F., Wang, J., Shen, G., Chen, J., & Li, W. (2015). Investigation on the performance of raceway ponds with internal structures by the means of CFD simulations and experiments. Algal Research, 10, 64–71.

    Article  Google Scholar 

  • Huang, J., Yang, Q., Chen, J., Wan, M., Ying, J., Fan, F., Wang, J., Li, W., & Li, Y. (2016). Design and optimization of a novel airlift-driven slo** raceway pond with numerical and practical experiments. Algal Research, 20, 164–171.

    Article  Google Scholar 

  • Huntley, M. E., & Redalje, D. G. (2007). CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitigation and Adaptation Strategies for Global Change, 12(4), 573–608.

    Article  Google Scholar 

  • Hu Q., Kurano, N., Kawachi, M., Iwasaki, I., Miyachi S. (1998). Ultrahigh-cell-density culture of a marine green alga Chlorococcum littorale in a flat-plate photobioreactor. Appl Microbiol Biotechnol, 49(6), 655–662.

    Google Scholar 

  • Javed, F., Aslam, M., Rashid, N., Shamair, Z., Khan, A. L., Yasin, M., Fazal, T., Hafeez, A., Rehman, F., Rehman, M. S. U., & Khan, Z. (2019). Microalgae-based biofuels, resource recovery and wastewater treatment: a pathway towards sustainable biorefinery. Fuel, 255, 115826.

    Article  CAS  Google Scholar 

  • Khadim, S. R., Singh, P., Singh, A. K., Tiwari, A., Mohanta, A., & Asthana, R. K. (2018). Mass cultivation of Dunaliella salina in a flat plate photobioreactor and its effective harvesting. Bioresource Technology, 270, 20–29.

    Article  CAS  Google Scholar 

  • Klinthong, W., Yang, Y. H., Huang, C. H., & Tan, C. S. (2015). A review: microalgae and their applications in CO2 capture and renewable energy. Aerosol and Air Quality Research, 15(2), 712–742.

    Article  CAS  Google Scholar 

  • Kong, W., Yang, S., Wang, H., Huo, H., Guo, B., Liu, N., Zhang, A., & Niu, S. (2020). Regulation of biomass, pigments, and lipid production by Chlorella vulgaris 31 through controlling trophic modes and carbon sources. Journal of Applied Phycology, 32(3), 1569–1579.

    Article  CAS  Google Scholar 

  • Kumar, A., Yuan, X., Sahu, A. K., Dewulf, J., Ergas, S. J., & Van Langenhove, H. (2010). A hollow fiber membrane photo-bioreactor for CO2 sequestration from combustion gas coupled with wastewater treatment: A process engineering approach. Journal of Chemical Technology and Biotechnology, 85(3), 387–394.

    Article  CAS  Google Scholar 

  • Kumar, K., Dasgupta, C. N., Nayak, B., Lindblad, P., & Das, D. (2011). Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresource Technology, 102(8), 4945–4953.

    Article  CAS  Google Scholar 

  • Leupold, M., Hindersin, S., Gust, G., Kerner, M., & Hanelt, D. (2012). Influence of mixing and shear stress on Chlorella vulgaris, Scenedesmus obliquus, and Chlamydomonas reinhardtii. Journal of Applied Phycology V, 25(2), 485–495.

    Article  Google Scholar 

  • Masojídek, J., Kopecký, J., Giannelli, L., & Torzillo, G. (2011). Productivity correlated to photobiochemical performance of Chlorella mass cultures grown outdoors in thin-layer cascades. Journal of Industrial Microbiology and Biotechnology, 38(2), 307–317.

    Article  Google Scholar 

  • Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Review, 14(1), 217–232.

    Article  CAS  Google Scholar 

  • Mendoza, J. L., Granados, M. R., de Godos, I., Acien, F. G., Molina, E., Heaven, S., & Banks, C. J. (2013). Oxygen transfer and evolution in microalgal culture in open raceways. Bioresource Technology, 137, 188–195.

    Article  CAS  Google Scholar 

  • Mohsenpour, S. F., & Willoughby, N. (2016). Effect of CO2 aeration on cultivation of microalgae in luminescent photobioreactors. Biomass and Bioenergy, 85, 168–177.

    Article  CAS  Google Scholar 

  • Molina, E., Fernández, J., Acién, F., & Chisti, Y. (2001). Tubular photobioreactor design for algal cultures. Journal of Biotechnology, 92(2), 113–131.

    Article  CAS  Google Scholar 

  • Nouri, H., Mohammadi Roushandeh, J., Hallajisani, A., Golzary, A., & Daliry, S. (2021). The effects of glucose, nitrate, and pH on cultivation of Chlorella sp. Microalgae. Global Journal of Environmental Science and Management, 7(1), 103–116.

    Google Scholar 

  • Ogbonna, J. C., Yoshizawa, H., & Tanaka, H. (2000). Treatment of high strength organic wastewater by a mixed culture of photosynthetic microorganisms. Journal of Applied Phycology, 12(3), 277–284.

    Article  CAS  Google Scholar 

  • Olaizola, M. (2000). Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. Journal of Applied Phycology, 12(3–5), 499–506.

    Google Scholar 

  • Park, K. C., Whitney, C., McNichol, J. C., Dickinson, K. E., MacQuarrie, S., Skrupski, B. P., Zou, J., Wilson, K. E., O’Leary, S. J. B., & McGinn, P. J. (2012). Mixotrophic and photoautotrophic cultivation of 14 microalgae isolates from Saskatchewan, Canada: potential applications for wastewater remediation for biofuel production. Journal of Applied Phycology, 24(3), 339–348.

    Article  CAS  Google Scholar 

  • Patel, A. K., Joun, J. M., Hong, M. E., & Sim, S. J. (2019). Effect of light conditions on mixotrophic cultivation of green microalgae. Bioresource Technology, 282, 245–253.

    Article  CAS  Google Scholar 

  • Perez-Garcia, O., Bashan, Y., & Esther Puente, M. (2011). Organic carbon supplementation of sterilized municipal wastewater is essential for heterotrophic growth and removing ammonium by the microalga Chlorella vulgaris 1. Journal of Phycology, 47(1), 190–199.

    Article  Google Scholar 

  • Perez-Garcia, O., De-Bashan, L. E., Hernandez, J.-P., & Bashan, Y. (2010). Efficiency of growth and nutrient uptake from wastewater by heterotrophic, autotrophic, and mixotrophic cultivation of Chlorella vulgaris immobilized with Azospirillum brasilense 1. Journal of Phycology, 46(4), 800–812.

    Article  CAS  Google Scholar 

  • Pires, J. C. M., Alvim-Ferraz, M. C. M., Martins, F. G., & Simões, M. (2012). Carbon dioxide capture from flue gases using microalgae: Engineering aspects and biorefinery concept. Renewable and Sustainable Energy Review, 16(5), 3043–3053.

    Article  CAS  Google Scholar 

  • Pulz, O. (2001). Photobioreactors: Production systems for phototrophic microorganisms. Applied Microbiology and Biotechnology, 57(3), 287–293.

    Article  CAS  Google Scholar 

  • Rahaman, M. S. A., Cheng, L.-H., Xu, X.-H., Zhang, L., & Chen, H.-L. (2011). A review of carbon dioxide capture and utilization by membrane integrated microalgal cultivation processes. Renewable and Sustainable Energy Review, 15(8), 4002–4012. https://doi.org/10.1016/j.rser.2011.07.03162

    Article  Google Scholar 

  • Razzak, S. A., Hossain, M. M., Lucky, R. A., Bassi, A. S., & de Lasa, H. (2013). Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—A review. Renewable and Sustainable Energy Review, 27, 622–653.

    Article  CAS  Google Scholar 

  • Reymann, T., Kerner, M., & Kümmerer, K. (2020). Assessment of the biotic and abiotic elimination processes of five micropollutants during cultivation of the green microalgae Acutodesmus obliquus. Biomass Conversion Biorefinery Bioresource Technology Report, 11, 100512. https://doi.org/10.1016/j.biteb.2020.100512

    Article  Google Scholar 

  • Rodolfi, L., Chini Zittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G., et al. (2009). Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering, 102(1), 100–112.

    Article  CAS  Google Scholar 

  • Ruiz-Marin, A., Mendoza-Espinosa, L. G., & Stephenson, T. (2010). Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresource Technology, 101(1), 58–64.

    Article  CAS  Google Scholar 

  • Sierra, E., Acién, F., Fernández, J., García, J., González, C., & Molina, E. (2008). Characterization of a flat plate photobioreactor for the production of microalgae. Chemical Engineering Journal, 138(1–3), 136–147.

    Article  CAS  Google Scholar 

  • Sivakaminathan, S., Wolf, J., Yarnold, J., Roles, J., Ross, I. L., Stephens, E., Henderson, G., & Hankamer, B. (2020). Light guide systems enhance microalgae production efficiency in outdoor high rate ponds. Algal Research, 47, 101846.

    Article  Google Scholar 

  • Slegers, P., Wijffels, R., Van Straten, G., & Van Boxtel, A. (2011). Design scenarios for flat panel photobioreactors. Applied Energy, 88(10), 3342–3353.

    Article  CAS  Google Scholar 

  • Sun, Y., Huang, Y., Liao, Q., Fu, Q., & Zhu, X. (2016). Enhancement of microalgae production by embedding hollow light guides to a flatplate photobioreactor. Bioresource Technology, 207, 31–38.

    Article  CAS  Google Scholar 

  • Suparmaniam, U., Lam, M. K., Uemura, Y., Lim, J. W., Lee, K. T., & Shuit, S. H. (2019). Insights into the microalgae cultivation technology and harvesting process for biofuel production: A review. Renewable and Sustainable Energy Review, 115, 109361.

    Google Scholar 

  • Tang, H., Chen, M., Simon Ng, K. Y., & Salley, S. O. (2012). Continuous microalgae cultivation in a photobioreactor. Biotechnology and Bioengineering, 109(10), 2468–2474.

    Article  CAS  Google Scholar 

  • Wan, M., Liu, P., **a, J., Rosenberg, J. N., Oyler, G. A., Betenbaugh, M. J., Nie, Z., & Qiu, G. (2011). The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana. Applied Microbiology and Biotechnology, 91(3), 835–844.

    Article  CAS  Google Scholar 

  • **aogang, H., Jalalah, M., **gyuan, W., Zheng, Y., Li, X., & Salama, E.S. (2020). Microalgal growth coupled with wastewater treatment in open and closed systems for advanced biofuel generation. Biomass Conversion and Biorefinery, 1–20.

    Google Scholar 

  • Xu, H., Miao, X., & Wu, Q. (2006). High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology, 126(4), 499–507.

    Article  CAS  Google Scholar 

  • Xu, X., Gu, X., Wang, Z., Shatner, W., & Wang, Z. (2019). Progress, challenges and solutions of research on photosynthetic carbon sequestration efficiency of microalgae. Renewable and Sustainable Energy Review, 110, 65–82.

    Article  CAS  Google Scholar 

  • Zhao, B., & Su, Y. (2014). Process effect of microalgal-carbon dioxide fixation and biomass production: a review. Renewable and Sustainable Energy Review, 31, 121–132.

    Google Scholar 

  • Zhu, L. (2015). Microalgal culture strategies for biofuel production: a review. Biofuels, Bioproducts and Biorefining, 9(6), 801–814.

    Google Scholar 

  • Zeng, X., Danquah, M. K., Chen, X. D., & Lu, Y. (2011). Microalgae bioengineering: from CO2 fixation to biofuel production. Renewable and Sustainable Energy Review, 15(6), 3252–3260. https://doi.org/10.1016/j.rser.2011.04.01457

    Article  CAS  Google Scholar 

  • Zhan, J., Rong, J., & Wang, Q. (2017). Mixotrophic cultivation, a preferable microalgae cultivation mode for biomass/bioenergy production, and bioremediation, advances and prospect. International Journal of Hydrogen Energy, 42(12), 8505–8517.

    Article  CAS  Google Scholar 

  • Zhang, J., He, Y., Luo, M., & Chen, F. (2020). Utilization of enzymatic cell disruption hydrolysate of Chlorella pyrenoidosa as potential carbon source in algae mixotrophic cultivation. Algal Research, 45, 101730.

    Article  Google Scholar 

  • Zhang, Q., Xue, S., Yan, C., Wu, X., Wen, S., & Cong, W. (2015). Installation of flow deflectors and wing baffles to reduce dead zone and enhance flashing light effect in an open raceway pond. Bioresource Technology, 198, 150–156.

    Article  CAS  Google Scholar 

  • Zhang, X.-W., Zhang, Y.-M., & Chen, F. (1999). Application of mathematical models to the determination optimal glucose concentration and light intensity for mixotrophic culture of Spirulina platensis. Process Biochemistry, 34(5), 477–481.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Prakash Rai .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rai, M.P., Vasistha, S. (2023). Traditional Cultivation System. In: Microalgae Biotechnology for Wastewater Treatment, Resource Recovery and Biofuels. Springer, Cham. https://doi.org/10.1007/978-3-031-31674-6_4

Download citation

Publish with us

Policies and ethics

Navigation