Hardware Architecture for GRAND Markov Order (GRAND-MO)

  • Chapter
  • First Online:
Guessing Random Additive Noise Decoding

Abstract

This chapter introduces the GRAND Markov Order (GRAND-MO), a hard-input variant of GRAND designed specifically for communication channels with memory that are prone to burst noise. In a traditional communication system, burst noise is generally mitigated by employing interleavers and de-interleavers at the expense of higher latency. GRAND-MO can be applied directly to hard demodulated channel signals, eliminating the need for additional interleavers and de-interleavers and resulting in a substantial reduction in overall latency in a communication system. This chapter proposes a high-throughput GRAND-MO VLSI design that can achieve an average throughput of up to 52 Gbps for code length n = 128. Furthermore, the proposed GRAND-MO decoder implementation with a codelength n = 79 has a 33% lower worst-case latency and a 2 dB gain in decoding performance, at a target FER of 10−5, as compared to the (79, 64) BCH code decoder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 149.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(1+2\ldots {n}=\frac {n\times (n+1)}{2}\).

  2. 2.

    Can be simplified to \(L\times (\frac {2\times {n}-L-3}{2})\).

References

  1. An, W., Médard, M., & Duffy, K. R. (2020). Keep the bursts and ditch the interleavers. In GLOBECOM 2020 - 2020 IEEE Global Communications Conference (pp. 1–6).

    Google Scholar 

  2. An, W., Médard, M., & Duffy, K. (2022). Keep the bursts and ditch the interleavers. IEEE Transactions on Communications,70, 3655–3667.

    Article  Google Scholar 

  3. Durisi, G., Koch, T., & Popovski, P. (2016). Toward massive, ultrareliable, and low-latency wireless communication with short packets. Proceedings of the IEEE,104, 1711–1726.

    Google Scholar 

  4. Chen, H., Abbas, R., Cheng, P., Shirvanimoghaddam, M., Hardjawana, W., Bao, W., et al. (2018). Ultra-reliable low latency cellular networks: Use cases, challenges and approaches. IEEE Communications Magazine,56, 119–125.

    Article  Google Scholar 

  5. Abbas, S. M., Jalaleddine, M., & Gross, W. J. (2021). High-throughput VLSI architecture for GRAND Markov order. In 2021 IEEE Workshop on Signal Processing Systems (SiPS) (pp. 158–163).

    Google Scholar 

  6. Abbas, S., Jalaleddine, M., & Gross, W. (2022). Hardware architecture for guessing random additive noise decoding Markov order (GRAND-MO). Journal of Signal Processing Systems, 94, 1047–1065. https://doi.org/10.1007/s11265-022-01775-2

    Article  Google Scholar 

  7. Gilbert, E. N. (1960). Capacity of a burst-noise channel. The Bell System Technical Journal,39(5), 1253–1265.

    Article  MathSciNet  Google Scholar 

  8. Hocquenghem, A. (1959). Codes correcteurs d’erreurs. Chiffres, 2, 147–156.

    MathSciNet  MATH  Google Scholar 

  9. Bose, R., & Ray-Chaudhuri, D. (1960). On a class of error correcting binary group codes. Information and Control,3, 68–79.

    Article  MathSciNet  MATH  Google Scholar 

  10. Gallager, R. G. (1968). Information theory and reliable communication.

    MATH  Google Scholar 

  11. Coffey, J. T., & Goodman, R. M. (1990). Any code of which we cannot think is good. IEEE Transactions on Information Theory,36(6), 1453–1461.

    Article  MathSciNet  MATH  Google Scholar 

  12. Peterson, W. W., & Brown, D. T. (1961). Cyclic codes for error detection. Proceedings of the IRE,49(1), 228–235.

    Article  MathSciNet  Google Scholar 

  13. Berlekamp, E. (1968). Nonbinary BCH decoding (abstr.). IEEE Transactions on Information Theory,14(2), 242–242.

    Article  Google Scholar 

  14. Massey, J. (1969). Shift-register synthesis and BCH decoding. IEEE Transactions on Information Theory,15(1), 122–127.

    Article  MathSciNet  MATH  Google Scholar 

  15. Duffy, K. R., Li, J., & Médard, M. (2019). Capacity-achieving guessing random additive noise decoding. IEEE Transactions on Information Theory,65(7), 4023–4040.

    Article  MathSciNet  MATH  Google Scholar 

  16. Abbas, S., Tonnellier, T., Ercan, F., & Gross, W. (2020). High-throughput VLSI architecture for GRAND. In 2020 IEEE Workshop on Signal Processing Systems (SiPS) (pp. 1–6).

    Google Scholar 

  17. Choi, S., Ahn, H. K., Song, B. K., Kim, J. P., Kang, S. H., & Jung, S. (2019). A decoder for short BCH codes with high decoding efficiency and low power for emerging memories. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 27(2), 387–397.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abbas, S.M., Jalaleddine, M., Gross, W.J. (2023). Hardware Architecture for GRAND Markov Order (GRAND-MO). In: Guessing Random Additive Noise Decoding. Springer, Cham. https://doi.org/10.1007/978-3-031-31663-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31663-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31662-3

  • Online ISBN: 978-3-031-31663-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation