Piezophototronic Effect on Light-Emitting Diode

  • Chapter
  • First Online:
Piezotronics and Piezo-Phototronics

Part of the book series: Microtechnology and MEMS ((MEMS))

  • 486 Accesses

Abstract

Piezophototronic effect is to use the piezoelectric polarization charges at a p–n junction to effectively tube the separation, recombination, and transport of charge carriers at an interface. As for LED, the piezophototronic effect is how to effectively tune the charge carrier combinations so that the light emission is maximized. This is one of the most important applications of piezophototronics. This chapter introduces the fundamental experimental design, theoretical simulations, and optimizations of various piezophototronic devices that have been fabricated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Fujii, Y. Gao, R. Sharma, E.L. Hu, S.P. DenBaars, S. Nakamura, Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening. Appl. Phys. Lett. 84(6), 855–857 (2004)

    Article  ADS  Google Scholar 

  2. X.F. Duan, Y. Huang, R. Agarwal, C.M. Lieber, Single-nanowire electrically driven lasers. Nature 421(6920), 241–245 (2003)

    Article  ADS  Google Scholar 

  3. M.A. Zimmler, D. Stichtenoth, C. Ronning, W. Yi, V. Narayanamurti, T. Voss, F. Capasso, Scalable fabrication of nanowire photonic and electronic circuits using spin-on glass. Nano Lett. 8(6), 1695–1699 (2008)

    Article  ADS  Google Scholar 

  4. S. Xu, C. Xu, Y. Liu, Y.F. Hu, R.S. Yang, Q. Yang, J.H. Ryou, H.J. Kim, Z. Lochner, S. Choi, R. Dupuis, Z.L. Wang, Ordered nanowire array blue/near-UV light emitting diodes. Adv. Mater. 22(42), 4749 (2010)

    Article  Google Scholar 

  5. Q. Yang, W.H. Wang, S. Xu, Z.L. Wang, Enhancing light emission of zno microwire-based diodes by piezo-phototronic effect. Nano Lett. 11(9), 4012–4017 (2011)

    Article  ADS  Google Scholar 

  6. J.M. Bao, M.A. Zimmler, F. Capasso, X.W. Wang, Z.F. Ren, Broadband ZnO single-nanowire light-emitting diode. Nano Lett. 6(8), 1719–1722 (2006)

    Article  ADS  Google Scholar 

  7. B. Weintraub, Y.G. Wei, Z.L. Wang, Optical fiber/nanowire hybrid structures for efficient three-dimensional dye-sensitized solar cells. Angew. Chem. Int. Ed. 48(47), 8981–8985 (2009)

    Article  Google Scholar 

  8. L.B. Shi, S. Cheng, R.B. Li, L. Kang, J.W. **, M.B. Li, C.Y. Xu, A study on strain affecting electronic structure of Wurtzite ZnO by first principles. Mod. Phys. Lett. B 23(19), 2339–2352 (2009)

    Article  ADS  MATH  Google Scholar 

  9. W. Shan, W. Walukiewicz, J.W. Ager, K.M. Yu, Y. Zhang, S.S. Mao, R. Kling, C. Kirchner, A. Waag, Pressure-dependent photoluminescence study of ZnO nanowires. Appl. Phys. Lett. 86, 153117 (2005)

    Article  ADS  Google Scholar 

  10. V.Y. Davydov, N.S. Averkiev, I.N. Goncharuk, D.K. Nelson, I.P. Nikitina, A.S. Polkovnikov, A.N. Smirnov, M.A. Jacobsen, O.K. Semchinova, Raman and photoluminescence studies of biaxial strain in GaN epitaxial layers grown on 6H-SiC. J. Appl. Phys. 82(10), 5097–5102 (1997)

    Article  ADS  Google Scholar 

  11. M. Suzuki, T. Uenoyama, Strain effect on electronic and optical properties of GaN/AlGaN quantum-well lasers. J. Appl. Phys. 80(12), 6868–6874 (1996)

    Article  ADS  Google Scholar 

  12. Z.L. Wang, Piezopotential gated nanowire devices: piezotronics and piezo-phototronics. Nano Today 5(6), 540–552 (2010)

    Article  Google Scholar 

  13. Z.W. Pan, Z.R. Dai, Z.L. Wang, Nanobelts of semiconducting oxides. Science 291(5510), 1947–1949 (2001)

    Article  ADS  Google Scholar 

  14. S.N. Cha, J.S. Seo, S.M. Kim, H.J. Kim, Y.J. Park, S.W. Kim, J.M. Kim, Sound-driven piezoelectric nanowire-based nanogenerators. Adv. Mater. 22(42), 4726 (2010)

    Article  Google Scholar 

  15. X.D. Wang, J. Zhou, J.H. Song, J. Liu, N.S. Xu, Z.L. Wang, Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett. 6(12), 2768–2772 (2006)

    Article  ADS  Google Scholar 

  16. Y. Yang, J. Qi, Q. Liao, H. Li, Y. Wang, L. Tang, Y. Zhang, High-performance piezoelectric gate diode of a single polar-surface dominated ZnO nanobelt. Nanotechnology 20(12), 125201 (2009)

    Article  ADS  Google Scholar 

  17. J. Ebothe, W. Gruhn, A. Elhichou, I.V. Kityk, R. Dounia, A. Addou, Giant piezooptics effect in the ZnO-Er3+ crystalline films deposited on the glasses. Opt. Laser Technol. 36(3), 173–180 (2004)

    Article  ADS  Google Scholar 

  18. G.A. Zhu, R.S. Yang, S.H. Wang, Z.L. Wang, Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett. 10(8), 3151–3155 (2010)

    Article  ADS  Google Scholar 

  19. Y.F. Hu, Y. Zhang, L. Lin, Y. Ding, G. Zhu, Z.L. Wang, Piezo-phototronic effect on electroluminescence properties of p-type GaN thin films. Nano Lett. 12(7), 3851–3856 (2012)

    Article  ADS  Google Scholar 

  20. U. Kaufmann, M. Kunzer, M. Maier, H. Obloh, A. Ramakrishnan, B. Santic, P. Schlotter, Nature of the 2.8 eV photoluminescence band in Mg doped GaN. Appl. Phys. Lett. 72(11), 1326–1328 (1998)

    Article  ADS  Google Scholar 

  21. B.Z. Qu, Q.S. Zhu, X.H. Sun, S.K. Wan, Z.G. Wang, H. Nagai, Y. Kawaguchi, K. Hiramatsu, N. Sawaki, Photoluminescence of Mg-doped GaN grown by metalorganic chemical vapor deposition. J. Vac. Sci. Technol., A 21(4), 838–841 (2003)

    Article  Google Scholar 

  22. J. Neugebauer, C.G. Van de Walle, Gallium vacancies and the yellow luminescence in GaN. Appl. Phys. Lett. 69(4), 503–505 (1996)

    Article  ADS  Google Scholar 

  23. C.G. Van de Walle, Interactions of hydrogen with native defects in GaN. Phys. Rev. B 56(16), 10020–10023 (1997)

    Article  Google Scholar 

  24. P.J. Dean, T. Inoguchi, S. Mito, K.I. Pankove, Y.S. Park, B.K. Shin, Y.M. Tairov, Y.A. Vodakov, S. Wagner, Electroluminescence, ed. by K.I. Pankove (Springer-Verlag, Berlin Heidelberg New York, 1977)

    Google Scholar 

  25. Y. Zhang, Y. Liu, Z.L. Wang, Fundamental theory of piezotronics. Adv. Mater. 23(27), 3004–3013 (2011)

    Article  Google Scholar 

  26. M.Z. Peng, Y. Zhang, Y.D. Liu, M. Song, J.Y. Zhai, Z.L. Wang, Magnetic-mechanical-electrical-optical coupling effects in GaN-based LED/rare-earth Terfenol-D structures. Adv. Mater. 26(39), 6767–6772 (2014)

    Article  Google Scholar 

  27. C.H. Du, C.Y. Jiang, P. Zuo, X. Huang, X. Pu, Z.F. Zhao, Y.L. Zhou, L.X. Li, H. Chen, W.G. Hu, Z.L. Wang, Piezo-Phototronic effect controlled dual-channel visible light communication (PVLC) using InGaN/GaN multiquantum well nanopillars. Small 11(45), 6071–6077 (2015)

    Article  Google Scholar 

  28. A.H. Azhar, T.A. Tran, D. O’Brien, A gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications. IEEE Photonics Technol. Lett. 25(2), 171–174 (2013)

    Article  ADS  Google Scholar 

  29. D.K. Borah, A.C. Boucouvalas, C.C. Davis, S. Hranilovic, K. Yiannopoulos, A review of communication-oriented optical wireless systems. Eurasip J. Wirel. Commun. Netw., pp 1–28 (2012)

    Google Scholar 

  30. C.H. Du, X. Huang, C.Y. Jiang, X. Pu, Z.F. Zhao, L. **g, W.G. Hu, Z.L. Wang, Tuning carrier lifetime in InGaN/GaN LEDs via strain compensation for high-speed visible light communication. Sci. Rep. 6, 1–10 (2016)

    Article  Google Scholar 

  31. P. Lefebvre, S. Anceau, P. Valvin, T. Taliercio, L. Konczewicz, T. Suski, S.P. Lepkowski, H. Teisseyre, H. Hirayama, Y. Aoyagi, Time-resolved spectroscopy of (Al, Ga, In) N based quantum wells: localization effects and effective reduction of internal electric fields. Phys. Rev. B 66(19), 195330 (2002)

    Article  ADS  Google Scholar 

  32. A. Reale, G. Massari, A. Di Carlo, P. Lugli, A. Vinattieri, D. Alderighi, M. Colocci, F. Semond, N. Grandjean, J. Massies, Comprehensive description of the dynamical screening of the internal electric fields of AlGaN/GaN quantum wells in time-resolved photoluminescence experiments. J. Appl. Phys. 93(1), 400–409 (2003)

    Article  ADS  Google Scholar 

  33. M. Pophristic, F.H. Long, C. Tran, I.T. Ferguson, Time-resolved photoluminescence measurements of InGaN light-emitting diodes. Appl. Phys. Lett. 73, 3550–3552 (1998)

    Article  ADS  Google Scholar 

  34. A. Kaneta, T. Mutoh, Y. Kawakami, S. Fujita, G. Marutsuki, Y. Narukawa, T. Mukai, Discrimination of local radiative and nonradiative recombination processes in an InGaN/GaN single-quantum-well structure by a time-resolved multimode scanning near-field optical microscopy. Appl. Phys. Lett. 83(17), 3462–3464 (2003)

    Article  ADS  Google Scholar 

  35. G.A. Garrett, H.E. Shen, M. Wraback, A. Tyagi, M.C. Schmidt, J.S. Speck, S.P. DenBaars, S. Nakamaura, Comparison of time-resolved photoluminescence from InGaN single quantum wells grown on nonpolar and semipolar bulk GaN substrates. Phys. Status Solidi (C) 6, S800–S803 (2009)

    Article  ADS  Google Scholar 

  36. P. Lefebvre, A. Morel, M. Gallart, T. Taliercio, J. Allegre, B. Gil, H. Mathieu, B. Damilano, N. Grandjean, J. Massies, High internal electric field in a graded-width InGaN/GaN quantum well: accurate determination by time-resolved photoluminescence spectroscopy. Appl. Phys. Lett. 78(9), 1252–1254 (2001)

    Article  ADS  Google Scholar 

  37. I. Vurgaftman, J.R. Meyer, Band parameters for nitrogen-containing semiconductors. J. Appl. Phys. 94(6), 3675–3696 (2003)

    Article  ADS  Google Scholar 

  38. A.R. Denton, N.W. Ashcroft, Vegard’s law. Phys. Rev. A 43(6), 3161–3164 (1991)

    Article  ADS  Google Scholar 

  39. C.W. Chow, C.H. Yeh, Y.F. Liu, Y. Liu, Improved modulation speed of LED visible light communication system integrated to main electricity network. Electron. Lett. 47(15), 867–868 (2011)

    Article  ADS  Google Scholar 

  40. C.H. Yeh, Y.L. Liu, C.W. Chow, Real-time white-light phosphor-LED visible light communication (VLC) with compact size. Opt Express 21(22), 26192–26197 (2013)

    Article  ADS  Google Scholar 

  41. S.X. Zhu, J.X. Wang, J.C. Yan, Y. Zhang, Y.R. Pei, Z. Si, H. Yang, L.X. Zhao, Z. Liu, J.M. Li, Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-Based light emitting diodes. ECS Solid State Lett. 3(3), R11–R13 (2014)

    Article  Google Scholar 

  42. D. Tsonev, H. Chun, S. Rajbhandari, J.J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A.E. Kelly, G.J. Faulkner, A 3-Gb/s single-LED OFDM-Based wireless VLC link using a gallium nitride μLED 26(7), 637–640 (2014)

    Google Scholar 

  43. X.F. Wang, R.M. Yu, C.Y. Jiang, W.G. Hu, W.Z. Wu, Y. Ding, W.B. Peng, S.T. Li, Z.L. Wang, Piezotronic effect modulated heterojunction electron gas in AlGaN/AlN/GaN heterostructure microwire. Adv. Mater. 28(33), 7234–7242 (2016)

    Article  Google Scholar 

  44. M.Z. Peng, Z. Li, C.H. Liu, Q. Zheng, X.Q. Shi, M. Song, Y. Zhang, S.Y. Du, J.Y. Zhai, Z.L. Wang, High-resolution dynamic pressure sensor array based on piezo-phototronic effect tuned photoluminescence imaging. ACS Nano 9(3), 3143–3150 (2015)

    Article  Google Scholar 

  45. S. Tripathy, V.K. Lin, S. Vicknesh, S.J. Chua, Micro-Raman probing of residual stress in freestanding GaN-based micromechanical structures fabricated by a dry release technique. J. Appl. Phys. 101(6), 063525 (2007)

    Article  ADS  Google Scholar 

  46. J.N. Lv, Z.C. Yang, G.Z. Yan, W.K. Lin, Y. Cai, B.S. Zhang, K.J. Chen, Fabrication of large-area suspended MEMS structures using GaN-on-Si platform. IEEE Electron Device Lett. 30(10), 1045–1047 (2009)

    Article  ADS  Google Scholar 

  47. H.Y. Gao, F.W. Yan, Y. Zhang, J.M. Li, Y.P. Zeng, G.H. Wang, Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro- and nanoscale. J. Appl. Phys. 103(1), 014314 (2008)

    Article  ADS  Google Scholar 

  48. W.K. Wang, S.Y. Huang, S.H. Huang, K.S. Wen, D.S. Wuu, R.H. Horng, Fabrication and efficiency improvement of micropillar InGaN∕Cu light-emitting diodes with vertical electrodes. Appl. Phys. Lett. 88(18), 181113 (2006)

    Article  ADS  Google Scholar 

  49. G.B. Fayisa, J.W. Lee, J. Kim, Y.I. Kim, Y. Park, J.K. Kim, Enhanced light extraction efficiency of micro-ring array AlGaN deep ultraviolet light-emitting diodes. Jpn. J. Appl. Phys. 56(9), 092101 (2017)

    Article  ADS  Google Scholar 

  50. I. Schnitzer, E. Yablonovitch, C. Caneau, T.J. Gmitter, A. Scherer, 30% external quantum efficiency from surface textured, thin-film light-emitting diodes. Appl. Phys. Lett. 63(16), 2174–2176 (1993)

    Article  ADS  Google Scholar 

  51. H.W. Choi, C. Liu, E. Gu, G. McConnell, J.M. Girkin, I.M. Watson, M.D. Dawson, GaN micro-light-emitting diode arrays with monolithically integrated sapphire microlenses. Appl. Phys. Lett. 84(13), 2253–2255 (2004)

    Article  ADS  Google Scholar 

  52. C.B. **ong, F.Y. Jiang, W.Q. Fang, L. Wang, H.C. Liu, C.N. Mo, Different properties of GaN-based LED grown on Si(111) and transferred onto new substrate. Sci. China Ser. E-Technol. Sci. 49(3), 313–321 (2006)

    Article  ADS  Google Scholar 

  53. P. Zhao, H.P. Zhao, Analysis of light extraction efficiency enhancement for thin-film-flip-chip InGaN quantum wells light-emitting diodes with GaN micro-domes. Opt. Express 20(105), A765-776 (2012)

    Article  ADS  Google Scholar 

  54. M.X. Chen, C.F. Pan, T.P. Zhang, X.Y. Li, R.R. Liang, Z.L. Wang, Tuning light emission of a pressure-sensitive silicon/ZnO nanowires heterostructure matrix through piezo-phototronic effects. ACS Nano 10(6), 6074–6079 (2016)

    Article  Google Scholar 

  55. X. Huang, C. Du, Y. Zhou, C. Jiang, X. Pu, W. Liu, W. Hu, H. Chen, Z.L. Wang, Piezo-phototronic effect in a quantum well structure. ACS Nano 10(5), 5145–5152 (2016)

    Article  Google Scholar 

  56. C. Jiang, L. **g, X. Huang, M. Liu, C. Du, T. Liu, X. Pu, W. Hu, Z.L. Wang, Enhanced solar cell conversion efficiency of InGaN/GaN multiple quantum wells by piezo-phototronic effect. ACS Nano 11(9), 9405–9412 (2017)

    Article  Google Scholar 

  57. J. Zhan, Z. Chen, Q. Jiao, Y. Feng, C. Li, Y. Chen, Y. Chen, F. Jiao, X. Kang, S. Li, Investigation on strain relaxation distribution in GaN-based μLEDs by Kelvin probe force microscopy and micro-photoluminescence. Opt Express 26(5), 5265–5274 (2018)

    Article  ADS  Google Scholar 

  58. B. Damilano, N. Grandjean, C. Pernot, J. Massies, Monolithic white light emitting diodes based on InGaN/GaN multiple-quantum wells. Jpn. J. Appl. Phys. Part 2 Lett. 40(9ab), L918–L920 (2001)

    Google Scholar 

  59. H.S. El-Ghoroury, M. Yeh, J.C. Chen, X. Li, C.L. Chuang, Growth of monolithic full-color GaN-based LED with intermediate carrier blocking layers. AIP Adv. 6(7), 075316 (2016)

    Article  ADS  Google Scholar 

  60. M. Kuball, Raman spectroscopy of GaN. AlGaN and AlN for process and growth monitoring/control. Surf. Interface Anal. 31(10), 987–999 (2001)

    Google Scholar 

  61. S. Tripathy, S.J. Chua, P. Chen, Z.L. Miao, Micro-Raman investigation of strain in GaN and AlxGa1− xN/GaN heterostructures grown on Si (111). J. Appl. Phys. 92(7), 3503–3510 (2002)

    Article  ADS  Google Scholar 

  62. L.S. Wang, K.Y. Zang, S. Tripathy, S.J. Chua, Effects of periodic delta-do** on the properties of GaN: Si films grown on Si (111) substrates. Appl. Phys. Lett. 85(24), 5881–5883 (2004)

    Article  ADS  Google Scholar 

  63. J.M. Wagner, F. Bechstedt, Properties of strained wurtzite GaN and AlN: Ab initio studies. Phys. Rev. B 66(11), 115202 (2002)

    Article  ADS  Google Scholar 

  64. H.F. Liu, H.L. Seng, J.H. Teng, S.J. Chua, D.Z. Chi, Effects of lift-off and strain relaxation on optical properties of InGaN/GaN blue LED grown on 150 mm diameter Si (111) substrate. J. Cryst. Growth 402, 155–160 (2014)

    Article  ADS  Google Scholar 

  65. C.H. Du, X. Huang, C.Y. Jiang, X. Pu, Z.F. Zhao, L. **g, W.G. Hu, Z.L. Wang, Tuning carrier lifetime in InGaN/GaN LEDs via strain compensation for high-speed visible light communication. Sci. Rep. 6(1), 37132 (2016)

    Article  ADS  Google Scholar 

  66. C. **ong, F. Jiang, W. Fang, L. Wang, H. Liu, C. Mo, Different properties of GaN-based LED grown on Si (111) and transferred onto new substrate. Sci. China Ser. E: Technol. Sci. 49(3), 313–321 (2006)

    Article  ADS  Google Scholar 

  67. J. Jiang, Q. Wang, B.Y. Wang, J.Q. Dong, Z.L. Li, X.Y. Li, Y.L. Zi, S.T. Li, X.F. Wang, Direct lift-off and the piezo-phototronic study of InGaN/GaN heterostructure membrane. Nano Energy 59, 545–552 (2019)

    Article  Google Scholar 

  68. P. Waltereit, O. Brandt, A. Trampert, H.T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, K.H. Ploog, Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature 406(6798), 865–868 (2000)

    Article  ADS  Google Scholar 

  69. A. Firdous, V. Niranjan, Smart density based traffic light system, in 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO) (IEEE, 2020), pp. 497–500

    Google Scholar 

  70. Y. Huang, E.L. Hsiang, M.Y. Deng, S.T. Wu, Light, Mini-LED, Micro-LED and OLED displays: present status and future perspectives. Sci. Appl. 9(1), 1–16 (2020)

    Google Scholar 

  71. M. Nimbalkar, M. Yawalkar, N. Mahajan, S.J. Dhoble, Potential of luminescent materials in phototherapy. Photodiagn. Photodyn. Ther. 33, 102082 (2021)

    Article  Google Scholar 

  72. M.H. Kim, M.F. Schubert, Q. Dai, J.K. Kim, E.F. Schubert, J. Piprek, Y. Park, Origin of efficiency droop in GaN-based light-emitting diodes. Appl. Phys. Lett. 91(18), 183507 (2007)

    Article  ADS  Google Scholar 

  73. A.A. Efremov, N.I. Bochkareva, R.I. Gorbunov, D.A. Lavrinovich, Y.T. Rebane, D.V. Tarkhin, Y.G. Shreter, Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs. J. Semiconductors 40(5), 605–610 (2006)

    Article  ADS  Google Scholar 

  74. N. Han, T.V. Cuong, M. Han, B.D. Ryu, S. Chandramohan, J.B. Park, J.H. Kang, Y.J. Park, K.B. Ko, H.Y. Kim, H.K. Kim, J.H. Ryu, Y.S. Katharria, C.J. Choi, C.H. Hong, Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern. Nat. Commun. 4(1), 1–8 (2013)

    Article  Google Scholar 

  75. C.H. Du, L. **g, C.Y. Jiang, T. Liu, X. Pu, J.M. Sun, D.B. Li, W.G. Hu, An effective approach to alleviating the thermal effect in microstripe array-LEDs via the piezo-phototronic effect. Mater. Horiz. 5(1), 116–122 (2018)

    Article  Google Scholar 

  76. M.F. Schubert, J. Xu, J.K. Kim, E.F. Schubert, M.H. Kim, S. Yoon, S.M. Lee, C. Sone, T. Sakong, Y. Park, Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop. Appl. Phys. Lett. 93(4), 041102 (2008)

    Article  ADS  Google Scholar 

  77. F. Nippert, S.Y. Karpov, G. Callsen, B. Galler, T. Kure, C. Nenstiel, M.R. Wagner, M. Strassburg, H.J. Lugauer, A. Hoffmann, Temperature-dependent recombination coefficients in InGaN light-emitting diodes: Hole localization, auger processes, and the green gap. Appl. Phys. Lett. 109(16), 161103 (2016)

    Article  ADS  Google Scholar 

  78. L.N. Zhao, D.W. Yan, Z.H. Zhang, B. Hua, G.F. Yang, Y.R. Cao, E.X. Zhang, X.F. Gu, D.M. Fleetwood, Temperature-dependent efficiency droop in GaN-based blue LEDs. IEEE Electron Device Lett. 39(4), 528–531 (2018)

    Article  ADS  Google Scholar 

  79. X.H. Lin, S.P. Mo, B.Z. Mo, L.S. Jia, Y. Chen, Z.D. Cheng, Thermal management of high-power LED based on thermoelectric cooler and nanofluid-cooled microchannel heat sink. Appl. Therm. Eng. 172, 115165 (2020)

    Article  Google Scholar 

  80. X.J. Zhou, P.F. Tian, C.W. Sher, J. Wu, H.Z. Liu, R. Liu, H.C. Kuo, Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display. Progr. Quant. Electron. 71, 100263 (2020)

    Article  Google Scholar 

  81. A.K. Bilgili, Ö. Akpınar, M.K. Öztürk, S. Özçelik, E. Özbay, XRD vs Raman for InGaN/GaN structures. Politeknik Dergisi 23(2), 291–296 (2019)

    Article  Google Scholar 

  82. V.M. Kaganer, B. Jenichen, M. Ramsteiner, U. Jahn, C. Hauswald, F. Grosse, S. Fernandez-Garrido, O. Brandt, Quantitative evaluation of the broadening of x-ray diffraction, Raman, and photoluminescence lines by dislocation-induced strain in heteroepitaxial GaN films. J. Phys. D Appl. Phys. 48(38), 385105 (2015)

    Article  ADS  Google Scholar 

  83. Y.H. Cho, G.H. Gainer, A.J. Fischer, J.J. Song, S. Keller, U.K. Mishra, S.P. DenBaars, “S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells. Appl. Phys. Lett. 73(10), 1370–1372 (1998)

    Article  ADS  Google Scholar 

  84. I.M. Tiginyanu, Strain, Charge Carriers, and Phonon Polaritons in Wurtzite GaN (2014)

    Google Scholar 

  85. J.M. Wagner, F. Bechstedt, Properties of strained wurtzite GaN and AlN: Ab initio studies. Phys. Rev. B 66(11), 115202 (2002)

    Google Scholar 

  86. T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, I. Akasaki, Quantum-confined stark effect due to piezoelectric fields in GaInN strained quantum wells. Jpn. J. Appl. Phys. 36(4A), L382 (1997)

    Article  ADS  Google Scholar 

  87. A.L. Zakgeim, G.L. Kuryshev, M.N. Mizerov, V.G. Polovinkin, I.V. Rozhansky, A.E. Chernyakov, A study of thermal processes in high-power InGaN/GaN flip-chip LEDs by IR thermal imaging microscopy. Semiconductors 44(3), 373–379 (2010)

    Article  ADS  Google Scholar 

  88. C.J. Lasance, A. Poppe, Thermal Management for LED Applications (Springer, New York, 2014)

    Book  Google Scholar 

  89. A. Keppens, W.R. Ryckaert, G. Deconinck, P. Hanselaer, High power light-emitting diode junction temperature determination from current-voltage characteristics. J. Appl. Phys. 104(9), 093104 (2008)

    Article  ADS  Google Scholar 

  90. P.Y. Yu, M. Cardona, Fundamentals of Semiconductors Graduate Texts in Physics (Springer-Verlag, Berlin Heidelberg, 2010)

    Book  Google Scholar 

  91. H. Masui, H. Kroemer, M.C. Schmidt, K.-C. Kim, N.N. Fellows, S. Nakamura, S.P. DenBaars, Electroluminescence efficiency of-oriented InGaN-based light-emitting diodes at low temperature. J. Phys. D Appl. Phys. 41(8), 082001 (2008)

    Article  ADS  Google Scholar 

  92. H.K. Lee, J.S. Yu, Y.T. Lee, Thermal analysis and characterization of the effect of substrate thinning on the peformances of GaN-based light emitting diodes. Physica Status Solidi (A) 207(6), 1497–1504 (2010)

    Article  ADS  Google Scholar 

  93. X. Guo, E.F. Schubert, Current crowding and optical saturation effects in GaInN/GaN light-emitting diodes grown on insulating substrates. Appl. Phys. Lett. 78(21), 3337–3339 (2001)

    Article  ADS  Google Scholar 

  94. O.B. Shchekin, J.E. Epler, T.A. Trottier, T. Margalith, D.A. Steigerwald, M.O. Holcomb, P.S. Martin, M.R. Krames, High performance thin-film flip-chip GaInN-GaN light-emitting diodes. Appl. Phys. Lett. 89(7), 071109 (2006)

    Article  ADS  Google Scholar 

  95. J. Ding, L.J. Che, X. Chen, T. Zhang, Y.D. Huang, Z.L. Huang, Z.M. Zeng, H.L. Zhang, S.N. Ding, H. Yang, Interdigital structure enhanced the current spreading and light output power of GaN-based light emitting diodes. IEEE Access 8, 105972–105979 (2020)

    Article  Google Scholar 

  96. S.M. Sze, Y. Li, K.K. Ng, Physics of Semiconductor Devices (John wiley & sons, 2021)

    Google Scholar 

  97. D.S. Kim, B. Han, Effect of junction temperature on heat dissipation of high power light emitting diodes. J. Appl. Phys. 119(12), 125104 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  98. A. Keppens, W.R. Ryckaert, G. Deconinck, P. Hanselaer, Modeling high power light-emitting diode spectra and their variation with junction temperature. J. Appl. Phys. 108(4), 043104 (2010)

    Article  ADS  Google Scholar 

  99. E.F. Schubert, Light-Emitting Diodes (2018)

    Google Scholar 

  100. T.H. Wang, J.L. Xu, X.D. Wang, The effect of multi-quantum barrier structure on light-emitting diodes performance by a non-isothermal model. Chin. Sci. Bull. 57(30), 3937–3942 (2012)

    Article  Google Scholar 

  101. J. Hader, J.V. Moloney, S.W. Koch, Supression of carrier recombination in semiconductor lasers by phase-space filling. Appl. Phys. Lett. 87(20), 201112 (2005)

    Article  ADS  Google Scholar 

  102. Z. Guo, H.W. Li, L.Q. Zhou, D.X. Zhao, Y.H. Wu, Z.Q. Zhang, W. Zhang, C.Y. Li, J. Yao, Large-scale horizontally aligned ZnO microrod arrays with controlled orientation, periodic distribution as building blocks for chip-in piezo-phototronic LEDs. Small 11(4), 438–445 (2015)

    Article  Google Scholar 

  103. K. Kim, Y. Jeon, K. Cho, S. Kim, Enhancement of trap-assisted green electroluminescence efficiency in ZnO/SiO2/Si nanowire light-emitting diodes on bendable substrates by piezophototronic effect. ACS Appl. Mater. Interfaces. 8(4), 2764–2773 (2016)

    Article  Google Scholar 

  104. C.F. Pan, L. Dong, G. Zhu, S.M. Niu, R.M. Yu, Q. Yang, Y. Liu, Z.L. Wang, High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. Nat. Photonics 7(9), 752–758 (2013)

    Article  ADS  Google Scholar 

  105. Y.F. Hu, Y.L. Chang, P. Fei, R.L. Snyder, Z.L. Wang, Designing the electric transport characteristics of ZnO micro/nanowire devices by coupling piezoelectric and photoexcitation effects. ACS Nano 4(2), 1234–1240 (2010)

    Article  Google Scholar 

  106. X. Han, M.X. Chen, C.F. Pan, Z.L. Wang, Progress in piezo-phototronic effect enhanced photodetectors. J. Mater. Chem. C 4(48), 11341–11354 (2016)

    Article  Google Scholar 

  107. M.L. Que, R.R. Zhou, X.D. Wang, Z.Q. Yuan, G.F. Hu, C.F. Pan, Progress in piezo-phototronic effect modulated photovoltaics. J. Phys.: Condens. Matter 28(43), 433001 (2016)

    ADS  Google Scholar 

  108. Y. Liu, S.M. Niu, Q. Yang, B.D. Klein, Y.S. Zhou, Z.L. Wang, Theoretical study of piezo-phototronic nano-LEDs. Adv. Mater. 26(42), 7209–7216 (2014)

    Article  Google Scholar 

  109. Q. Yang, Y. Liu, C.F. Pan, J. Chen, X.N. Wen, Z.L. Wang, Largely enhanced efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet light-emitting diode by piezo-phototronic effect. Nano Lett. 13(2), 607–613 (2013)

    Article  ADS  Google Scholar 

  110. C.F. Pan, M.X. Chen, R.M. Yu, Q. Yang, Y.F. Hu, Y. Zhang, Z.L. Wang, Progress in piezo-phototronic-effect-enhanced light-emitting diodes and pressure imaging. Adv. Mater. 28(8), 1535–1552 (2016)

    Article  Google Scholar 

  111. C.F. Wang, R.R. Bao, K. Zhao, T.P. Zhang, L. Dong, C.F. Pan, Enhanced emission intensity of vertical aligned flexible ZnO nanowire/p-polymer hybridized LED array by piezo-phototronic effect. Nano Energy 14, 364–371 (2015)

    Article  Google Scholar 

  112. M.L. Que, X.D. Wang, Y.Y. Peng, C.F. Pan, Flexible electrically pumped random lasing from ZnO nanowires based on metal-insulator-semiconductor structure. Chin. Phys. B 26(6), 067301 (2017)

    Article  ADS  Google Scholar 

  113. T.P. Zhang, R.R. Liang, L. Dong, J. Wang, J. Xu, C.F. Pan, Wavelength-tunable infrared light emitting diode based on ordered ZnO nanowire/Si1–x Gex alloy heterojunction. Nano Res. 8(8), 2676–2685 (2015)

    Article  Google Scholar 

  114. C.F. Pan, J. Zhu, The syntheses, properties and applications of Si, ZnO, metal, and heterojunction nanowires. J. Mater. Chem. 19(7), 869–884 (2009)

    Article  Google Scholar 

  115. X.Y. Li, R.R. Liang, J. Tao, Z.C. Peng, Q.M. Xu, X. Han, X.D. Wang, C.F. Wang, J. Zhu, C.F. Pan, Z.L. Wang, Flexible light emission diode arrays made of transferred Si microwires-ZnO nanofilm with piezo-phototronic effect enhanced lighting. ACS Nano 11(4), 3883–3889 (2017)

    Article  Google Scholar 

  116. R.R. Bao, C.F. Wang, Z.C. Peng, C. Ma, L. Dong, C.F. Pan, Light-emission enhancement in a flexible and size-controllable ZnO nanowire/organic light-emitting diode array by the piezotronic effect. ACS Photonics 4(6), 1344–1349 (2017)

    Article  Google Scholar 

  117. Q.L. Hua, J.L. Sun, H.T. Liu, R.R. Bao, R.M. Yu, J.Y. Zhai, C.F. Pan, Z.L. Wang, Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 9(1), 1–11 (2018)

    Article  ADS  Google Scholar 

  118. X.L. Zhao, Q.L. Hua, R.M. Yu, Y. Zhang, C.F. Pan, Flexible, stretchable and wearable multifunctional sensor array as artificial electronic skin for static and dynamic strain map**. Adv. Electron. Mater. 1(7), 1500142 (2015)

    Article  Google Scholar 

  119. R.R. Bao, C.F. Wang, L. Dong, R.M. Yu, K. Zhao, Z.L. Wang, C.F. Pan, Flexible and controllable piezo-phototronic pressure map** sensor matrix by ZnO NW/p-polymer LED array. Adv. Func. Mater. 25(19), 2884–2891 (2015)

    Article  Google Scholar 

  120. X.Y. Li, M.X. Chen, R.M. Yu, T.P. Zhang, D.S. Song, R.R. Liang, Q.L. Zhang, S.B. Cheng, L. Dong, A.L. Pan, Z.L. Wang, J. Zhu, C.F. Pan, Enhancing light emission of ZnO-nanofilm/Si-micropillar heterostructure arrays by piezo-phototronic effect. Adv. Mater. 27(30), 4447–4453 (2015)

    Article  Google Scholar 

  121. C. Wang, D. Peng, J. Zhao, R. Bao, T. Li, L. Tian, L. Dong, C. Shen, C. Pan, CdS@ SiO2 core-shell electroluminescent nanorod arrays based on a metal–insulator–semiconductor structure. Small 12(41), 5734–5740 (2016)

    Article  Google Scholar 

  122. R.R. Bao, C.F. Wang, L. Dong, C.Y. Shen, K. Zhao, C.F. Pan, CdS nanorods/organic hybrid LED array and the piezo-phototronic effect of the device for pressure map**. Nanoscale 8(15), 8078–8082 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Lin Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Z.L., Zhang, Y., Hu, W. (2023). Piezophototronic Effect on Light-Emitting Diode. In: Piezotronics and Piezo-Phototronics. Microtechnology and MEMS. Springer, Cham. https://doi.org/10.1007/978-3-031-31497-1_12

Download citation

Publish with us

Policies and ethics

Navigation