Deep Simplex Classifier for Maximizing the Margin in Both Euclidean and Angular Spaces

  • Conference paper
  • First Online:
Image Analysis (SCIA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13886))

Included in the following conference series:

  • 662 Accesses

Abstract

The classification loss functions used in deep neural network classifiers can be grouped into two categories based on maximizing the margin in either Euclidean or angular spaces. Euclidean distances between sample vectors are used during classification for the methods maximizing the margin in Euclidean spaces whereas the Cosine similarity distance is used during the testing stage for the methods maximizing margin in the angular spaces. This paper introduces a novel classification loss that maximizes the margin in both the Euclidean and angular spaces at the same time. This way, the Euclidean and Cosine distances will produce similar and consistent results and complement each other, which will in turn improve the accuracies. The proposed loss function enforces the samples of classes to cluster around the centers that represent them. The centers approximating classes are chosen from the boundary of a hypersphere, and the pairwise distances between class centers are always equivalent. This restriction corresponds to choosing centers from the vertices of a regular simplex. There is not any hyperparameter that must be set by the user in the proposed loss function, therefore the use of the proposed method is extremely easy for classical classification problems. Moreover, since the class samples are compactly clustered around their corresponding means, the proposed classifier is also very suitable for open set recognition problems where test samples can come from the unknown classes that are not seen in the training phase. Experimental studies show that the proposed method achieves the state-of-the-art accuracies on open set recognition despite its simplicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 105.49
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balko, M., Por, A., Scheucher, M., Swanepoel, K., Valtr, P.: Almost-equidistant sets. Graphs and Combinatorics 36, 729–754 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bendale, A., Boult, T.E.: Towards open set deep networks. In: CVPR (2016)

    Google Scholar 

  3. Cevikalp, H., Larlus, D., Neamtu, M., Triggs, B., Jurie, F.: Manifold based local classifiers: linear and nonlinear approaches. J. Signal Process. Syst. 61, 61–73 (2010)

    Article  Google Scholar 

  4. Cevikalp, H., Neamtu, M.W.: Discriminative common vector method with kernels. IEEE Trans. Neural Networks 17, 1550–1565 (2006)

    Google Scholar 

  5. Cevikalp, H., Saglamlar, H.: Polyhedral conic classifiers for computer vision applications and open set recognition. IEEE Trans. Pattern Anal. Mach. Intell. 43, 608–622 (2021)

    Article  Google Scholar 

  6. Cevikalp, H., Triggs, B.: Polyhedral conic classifiers for visual object detection and classification. In: IEEE Society Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  7. Cevikalp, H., Uzun, B., Kopuklu, O., Ozturk, G.: Deep compact polyhedral conic classifier for open and closed set recognition. Pattern Recogn. 119(108080), 1–12 (2021)

    Google Scholar 

  8. Cevikalp, H., Uzun, B., Salk, Y., Saribas, H., Kopuklu, O.: From anomaly detection to open set recognition: Bridging the gap. Pattern Recogn. 138, 109385 (2023)

    Article  Google Scholar 

  9. Chen, G., et al.: Learning open set network with discriminative reciprocal points. In: ECCV (2020)

    Google Scholar 

  10. Cortes, C., Vapnik, V.: Support vector networks. Mach. Learn. 20, 273–297 (1995)

    Article  MATH  Google Scholar 

  11. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: Additive angular margin loss for deep face recognition. In: IEEE Society Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  12. Deng, J., Zhou, Y., Zafeiriou, S.: Marginal loss for deep face recognition. In: IEEE Society Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2017)

    Google Scholar 

  13. Dhamija, A.R., Gunther, M., Boult, T.E.: Reducing network agnostophobia. In: Neural Information Processing Systems (NeurIPS) (2018)

    Google Scholar 

  14. Do, T.T., Tran, T., Reid, I., Kumar, V., Hoang, T., Carneiro, G.: A theoretically sound upper bound on the triplet loss for improving the efficiency of deep distance metric learning. In: CVPR (2019)

    Google Scholar 

  15. Duan, Y., Lu, J., Zhou, J.: Uniformface: Learning deep equidistributed representations for face recognition. In: IEEE Society Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  16. Geng, C., Huang, S.J., Chen, S.: Recent advances in open set recognition: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 43(10), 3614–3631 (2021)

    Article  Google Scholar 

  17. Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: MS-Celeb-1M: a dataset and benchmark for large-scale face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 87–102. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_6

    Chapter  Google Scholar 

  18. Hall, P., Marron, J.S., Neeman, A.: Geometric representation of high dimension, low sample size data. J. Roy. Stat. Soc. B 67, 427–444 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  20. Hoffer, E., Ailon, N.: Deep metric learning using triplet network. In: International Conference on Learning and Recognition (ICLR) Workshops (2015)

    Google Scholar 

  21. Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A database forstudying face recognition in unconstrained environments. In: Workshop on faces in ‘Real-Life’ Images: detection, alignment, and recognition (2008)

    Google Scholar 

  22. Jimenez, L.O., Landgrebe, D.A.: Supervised classification in high dimensional space: geometrical, statistical, and asymptotical properties of multivariate data. IEEE Trans. Syst., Man, Cybern.-Part C: Appl. Rev. 28(1), 39–54 (1998)

    Article  Google Scholar 

  23. Lin, R., et al.: Regularizing neural networks via minimizing hyperspherical energy. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6916–6925 (2020)

    Google Scholar 

  24. Liu, W., et al.: Learning towards minimum hyperspherical energy. In: Neural Information Processing Systems (NeurIPS) (2018)

    Google Scholar 

  25. Liu, W., Lin, R., Liu, Z., **ong, L., Scholkopf, B., Weller, A.: Learning with hyperspherical uniformity. In: International Conference on Artificial Intelligence and Statistics (AISTATS) (2021)

    Google Scholar 

  26. Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: Sphereface: Deep hypersphere embedding for face recognition. In: IEEE Society Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  27. Liu, W., Wen, Y., Yu, Z., Yang, M.: Large-margin softmax loss for convolutional neural networks. In: International Conference on Machine Learning (ICML) (2016)

    Google Scholar 

  28. Mika, S., Ratsch, G., Weston, J., Scholkopf, B., Mullers, K.: Fisher discriminant analysis with kernels. In: Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop, pp. 41–48 (1999)

    Google Scholar 

  29. Miller, D., Sunderhauf, N., Milford, M., Dayoub, F.: Class anchor clustering: A loss for distance-based open set recognition. In: WACV (2021)

    Google Scholar 

  30. Moschoglou, S., Papaioannou, A., Sagonas, C., Deng, J., Kotsia, I., Zafeiriou, S.: Agedb: The first manually collected, in-the-wild age database. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). pp. 1997–2005 (2017). https://doi.org/10.1109/CVPRW.2017.250

  31. Neal, L., Olson, M., Fern, X., Wong, W.K., Li, F.: Open set learning with counterfactual images. In: ECCV (2018)

    Google Scholar 

  32. Oza, P., Patel, V.M.: C2ae: Class conditioned auto-encoder for open-set recognition. In: CVPR (2019)

    Google Scholar 

  33. Papyan, V., Han, X., Donoho, D.L.: Prevalence of neural collapse during the terminal phase of deep learning training. Proc. Natl. Acad. Sci. 117, 24652–24663 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  34. Perera, P., et al.: Generative-discriminative feature representations for open-set recognition. In: CVPR (2020)

    Google Scholar 

  35. Qi, C., Su, F.: Contrastive-center loss for deep neural networks. In: IEEE International Conference on Image Processing (ICIP) (2017)

    Google Scholar 

  36. Rahimi, A., Recht, B.: Random features for large-scale kernel machines. In: NIPS (2007)

    Google Scholar 

  37. Roy, S.K., Harandi, M., Nock, R., Hartley, R.: Siamese networks: The tale of two manifolds. In: International Conference on Computer Vision (2019)

    Google Scholar 

  38. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115, 201–252 (2015)

    Article  MathSciNet  Google Scholar 

  39. Scheirer, W.J., Rocha, A., Sapkota, A., Boult, T.E.: Towards open set recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1757–1772 (2013)

    Article  Google Scholar 

  40. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face recognition and clustering. In: IEEE Society Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  41. Sohn, K.: Improved deep metric learning with multi-class n-pair loss objective. In: Neural Information Processing Systems (NIPS) (2016)

    Google Scholar 

  42. Torralba, A., Fergus, R., Freeman, W.T.: 80 million tiny images: A large data set for nonparametric object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 30(11), 1958–1970 (2008)

    Article  Google Scholar 

  43. Vedaldi, A., Zisserman, A.: Efficient additive kernels via explicit feature maps. IEEE Trans. Pattern Anal. Mach. Intell. 34, 480–492 (2012)

    Article  Google Scholar 

  44. Wang, H., et al.: Cosface: Large margin cosine loss for deep face recognition. In: IEEE Society Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  45. Wen, Y., Zhang, K., Li, Z., Qiao, Y.: A discriminative feature learning approach for deep face recognition. In: European Conference on Computer Vision (2016)

    Google Scholar 

  46. Wen, Y., Zhang, K., Li, Z., Qiao, Y.: A comprehensive study on center loss for deep face recognition. Int. J. Comput. Vision 127, 668–683 (2019)

    Article  Google Scholar 

  47. Yang, H.M., Zhang, X.Y., Yin, F., Yang, Q., Liu, C.L.: Convolutional prototype network for open set recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–1 (2020). https://doi.org/10.1109/TPAMI.2020.3045079

  48. Yoshihashi, R., Shao, W., Kawakami, R., You, S., Iida, M., Naemura, T.: Classification-reconstruction learning for open-set recognition. In: CVPR (2019)

    Google Scholar 

  49. Zhang, X., Fang, Z., Wen, Y., Li, Z., Qiao, Y.: Range loss for deep face recognition with long-tailed training data. In: International Conference on Computer Vision (2017)

    Google Scholar 

  50. Zheng, T., Deng, W.: Cross-pose lfw: A database for studying cross-pose face recognition in unconstrained environments. Bei**g University of Posts and Telecommunications, Tech. rep. (2018)

    Google Scholar 

  51. Zheng, T., Deng, W., Hu, J.: Cross-age LFW: A database for studying cross-age face recognition in unconstrained environments. CoRR abs/1708.08197 (2017), http://arxiv.org/abs/1708.08197

Download references

Acknowledgements

This work was supported by the Scientific and Technological Research Council of Turkey (TUBİTAK) under Grant number EEEAG-121E390.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakan Cevikalp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cevikalp, H., Saribas, H. (2023). Deep Simplex Classifier for Maximizing the Margin in Both Euclidean and Angular Spaces. In: Gade, R., Felsberg, M., Kämäräinen, JK. (eds) Image Analysis. SCIA 2023. Lecture Notes in Computer Science, vol 13886. Springer, Cham. https://doi.org/10.1007/978-3-031-31438-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31438-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31437-7

  • Online ISBN: 978-3-031-31438-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation