ConvSegFormer - A Convolution Aided SegFormer Architecture for Detection of Discontinuities in Wrapped Interferometric Phase Imagery of Sea Ice

  • Conference paper
  • First Online:
Image Analysis (SCIA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13886))

Included in the following conference series:

  • 699 Accesses

Abstract

Transformers are more expressive than convolutions due to their global receptive field and lack of inherent biases. However, they require large amounts of training data to use this expressivity, which might hinder their application in scenarios with scarce training data. In the past, several works explored the idea of adding convolutions to transformer architecture to mitigate this issue. Yet, they underutilize hierarchical features extracted by these convolutions. We propose ConvSegformer, a hybrid deep learning model, by modifying the SegFormer architecture. We add a parallel convolutional encoder to extract hierarchical features that guide the SegFormer model. Furthermore, we replace the simple decoding scheme of the SegFormer architecture with a progressive upsampling method using features from both SegFormer and convolutional encoders. Finally, we modify the efficient self-attention module in the SegFormer branch to integrate transformer and convolution features. We demonstrate the efficacy of the proposed method in detecting discontinuities in Gamma Portable Radar Interferometer (GPRI) images. The code is available at https://github.com/VimsLab/ConvSegFormer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ali, A., et al.: XCiT: cross-covariance image transformers. Adv. Neural. Inf. Process. Syst. 34, 20014–20027 (2021)

    Google Scholar 

  2. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  3. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. ar**v preprint ar**v:1706.05587 (2017)

  4. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  5. Dai, Z., Cai, B., Lin, Y., Chen, J.: UP-DETR: unsupervised pre-training for object detection with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1601–1610 (2021)

    Google Scholar 

  6. Deng, J., et al.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  7. Fan, T., Wang, G., Li, Y., Wang, H.: MA-Net: a multi-scale attention network for liver and tumor segmentation. IEEE Access 8, 179656–179665 (2020). https://doi.org/10.1109/ACCESS.2020.3025372

    Article  Google Scholar 

  8. Gulati, A., et al.: Conformer: convolution-augmented transformer for speech recognition. ar**v preprint ar**v:2005.08100 (2020)

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  10. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. ar**v preprint ar**v:1704.04861 (2017)

  11. Hudson, D.A., Zitnick, L.: Generative adversarial transformers. In: International Conference on Machine Learning, pp. 4487–4499. PMLR (2021)

    Google Scholar 

  12. Jiang, Y., Chang, S., Wang, Z.: TransGAN: two transformers can make one strong gan. ar**v preprint ar**v:2102.07074 1(3) (2021)

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. ar**v preprint ar**v:1412.6980 (2014)

  14. Li, H., **ong, P., An, J., Wang, L.: Pyramid attention network for semantic segmentation. ar**v preprint ar**v:1805.10180 (2018)

  15. Lin, T.Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  16. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  17. Moreira, A., Prats-Iraola, P., Younis, M., Krieger, G., Hajnsek, I., Papathanassiou, K.P.: A tutorial on synthetic aperture radar. IEEE Geosci. Remote Sens. Mag. 1(1), 6–43 (2013). https://doi.org/10.1109/MGRS.2013.2248301

    Article  Google Scholar 

  18. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32 (2019)

    Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Strudel, R., Garcia, R., Laptev, I., Schmid, C.: Segmenter: transformer for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7262–7272 (2021)

    Google Scholar 

  21. Wu, H., et al.: CvT: introducing convolutions to vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 22–31 (2021)

    Google Scholar 

  22. **ao, T., Singh, M., Mintun, E., Darrell, T., Dollár, P., Girshick, R.: Early convolutions help transformers see better. Adv. Neural. Inf. Process. Syst. 34, 30392–30400 (2021)

    Google Scholar 

  23. **e, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: SegFormer: simple and efficient design for semantic segmentation with transformers. Adv. Neural. Inf. Process. Syst. 34, 12077–12090 (2021)

    Google Scholar 

  24. Yuan, K., Guo, S., Liu, Z., Zhou, A., Yu, F., Wu, W.: Incorporating convolution designs into visual transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 579–588 (2021)

    Google Scholar 

  25. Zheng, S., et al.: Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6881–6890 (2021)

    Google Scholar 

  26. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

  27. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. ar**v preprint ar**v:2010.04159 (2020)

Download references

Acknowledgement

This work was supported by the Office of Naval Research, Arctic and Global Prediction Program as part of the Sea Ice Dynamics Experiment (SIDEx) under award number N00014-19-1-2606. The authors would like to thank Dr. Jennifer Hutchings, Dr. Chris Polashenski, and other members of the SIDEx team for their contributions to this work in the form of invaluable input and feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Venkata Sai Dulam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dulam, R.V.S., Fedders, E.R., Mahoney, A.R., Kambhamettu, C. (2023). ConvSegFormer - A Convolution Aided SegFormer Architecture for Detection of Discontinuities in Wrapped Interferometric Phase Imagery of Sea Ice. In: Gade, R., Felsberg, M., Kämäräinen, JK. (eds) Image Analysis. SCIA 2023. Lecture Notes in Computer Science, vol 13886. Springer, Cham. https://doi.org/10.1007/978-3-031-31438-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31438-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31437-7

  • Online ISBN: 978-3-031-31438-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation