Part of the book series: Advances in Mechanics and Mathematics ((ACM,volume 48))

  • 412 Accesses

Abstract

This chapter is devoted to the finite element approximation of the Signorini problem (3.12) described in previous Chap. 3. We start with the simplest possible setting just to point out the main difficulty that appears in the convergence analysis of many methods. We then present discretizations based on a direct approximation of the variational inequality (3.12), with different alternatives to build discrete convex cones that approximate K. After this, we focus on the derivation of optimal a priori error estimates in the natural H 1-norm related to the approximate solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ainsworth, M., Parker, C.: Unlocking the secrets of locking: finite element analysis in planar linear elasticity. Comput. Methods Appl. Mech. Eng. 395, 115034, 56 (2022). https://doi.org/10.1016/j.cma.2022.115034

  2. Antolin, P., Buffa, A., Fabre, M.: A priori error for unilateral contact problems with Lagrange multipliers and isogeometric analysis. IMA J. Numer. Anal. 39(4), 1627–1651 (2019). https://doi.org/10.1093/imanum/dry041

    Article  MathSciNet  MATH  Google Scholar 

  3. Apel, T., Nicaise, S.: Regularity of the solution of the scalar Signorini problem in polygonal domains. Result. Math. 75(2), 15 (2020). Id/No 75

    Google Scholar 

  4. Ben Belgacem, F.: Numerical simulation of some variational inequalities arisen from unilateral contact problems by the finite element methods. SIAM J. Numer. Anal. 37(4), 1198–1216 (2000). https://doi.org/10.1137/S0036142998347966

    Article  MathSciNet  MATH  Google Scholar 

  5. Ben Belgacem, F., Renard, Y., Slimane, L.: A mixed formulation for the Signorini problem in nearly incompressible elasticity. Appl. Numer. Math. 54(1), 1–22 (2005). https://doi.org/10.1016/j.apnum.2004.09.036

    Article  MathSciNet  MATH  Google Scholar 

  6. Brezzi, F., Hager, W.W., Raviart, P.A.: Error estimates for the finite element solution of variational inequalities. I. Primal theory. Numer. Math. 28(4), 431–443 (1977)

    MathSciNet  MATH  Google Scholar 

  7. Brezzi, F., Hager, W.W., Raviart, P.A.: Error estimates for the finite element solution of variational inequalities. II. Mixed methods. Numer. Math. 31(1), 1–16 (1978/1979). https://doi.org/10.1007/BF01396010

    MATH  Google Scholar 

  8. Cantin, P., Hild, P.: Error analysis of the compliance model for the Signorini problem. Calcolo 58(3), 32, 21 (2021). https://doi.org/10.1007/s10092-021-00425-6

  9. Chen, Z., Nochetto, R.: Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math. 84, 527–548 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chernov A. Maischak, M., Stephan, E.: A priori error estimates for hp penalty BEM for contact problems in elasticity. Comput. Methods Appl. Mech. Eng. 196, 3871–3880 (2007)

    Google Scholar 

  11. Christof, C., Haubner, C.: Finite element error estimates in non-energy norms for the two-dimensional scalar Signorini problem. Numer. Math. 145(3), 513–551 (2020). https://doi.org/10.1007/s00211-020-01117-z

    Article  MathSciNet  MATH  Google Scholar 

  12. Christof, C., Haubner, C.: Correction to: finite element error estimates in non-energy norms for the two-dimensional scalar Signorini problem. Numer. Math. 148(2), 495 (2021). https://doi.org/10.1007/s00211-021-01204-9

    Article  MathSciNet  MATH  Google Scholar 

  13. Ciarlet, P.G.: The finite element method for elliptic problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. II. North-Holland Publishing, Amsterdam (1991)

    Google Scholar 

  14. Clement, F.: Approximation by finite element functions using local regularization. RAIRO Anal. Numer. 2, 77–84 (1975)

    MathSciNet  MATH  Google Scholar 

  15. Coorevits, P., Hild, P., Lhalouani, K., Sassi, T.: Mixed finite element methods for unilateral problems: convergence analysis and numerical studies. Math. Comp. 71(237), 1–25 (2002). https://doi.org/10.1090/S0025-5718-01-01318-7

    Article  MathSciNet  MATH  Google Scholar 

  16. Drouet, G., Hild, P.: Optimal convergence for discrete variational inequalities modelling Signorini contact in 2D and 3D without additional assumptions on the unknown contact set. SIAM J. Numer. Anal. 53(3), 1488–1507 (2015). https://doi.org/10.1137/140980697

    Article  MathSciNet  MATH  Google Scholar 

  17. Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements. Applied Mathematical Sciences, vol. 159. Springer, New York (2004)

    Google Scholar 

  18. Ern, A., Guermond, J.L.: Finite elements I—Approximation and Interpolation. Texts in Applied Mathematics, vol. 72. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-56341-7

  19. Falk, R.: Error estimates for the approximation of a class of variational inequalities. Math. Comput. 28(128), 963–971 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  20. Führer, T., Heuer, N., Stephan, E.P.: On the DPG method for Signorini problems. IMA J. Numer. Anal. 38(4), 1893–1926 (2018). https://doi.org/10.1093/imanum/drx048

    Article  MathSciNet  MATH  Google Scholar 

  21. Gatica, G.N., Maischak, M., Stephan, E.P.: Numerical analysis of a transmission problem with Signorini contact using mixed-FEM and BEM. ESAIM Math. Model. Numer. Anal. 45(4), 779–802 (2011). https://doi.org/10.1051/m2an/2010102

    Article  MathSciNet  MATH  Google Scholar 

  22. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer Series in Computational Physics. Springer, New York (1984). https://doi.org/10.1007/978-3-662-12613-4

  23. Haslinger, J.: Finite element analysis for unilateral problems with obstacles on the boundary. Appl. Math. 22(3), 180–188 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  24. Haslinger, J., Hlaváček, I., Nečas, J.: Numerical methods for unilateral problems in solid mechanics. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. IV. North-Holland Publishing, Amsterdam (1996)

    Google Scholar 

  25. Hilbert, S.: A mollifier useful for approximations in Sobolev spaces and some applications to approximating solutions to differential equations. Math. Comp. 27(121), 81–89 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hild, P., Renard, Y.: An improved a priori error analysis for finite element approximations of Signorini’s problem. SIAM J. Numer. Anal. 50(5), 2400–2419 (2012). https://doi.org/10.1137/110857593

    Article  MathSciNet  MATH  Google Scholar 

  27. Hua, D., Wang, L.: The nonconforming finite element method for Signorini problem. J. Comput. Math. 25(1), 67–80 (2007)

    MathSciNet  MATH  Google Scholar 

  28. Hüeber, S., Wohlmuth, B.I.: An optimal a priori error estimate for nonlinear multibody contact problems. SIAM J. Numer. Anal. 43(1), 156–173 (2005). https://doi.org/10.1137/S0036142903436678

    Article  MathSciNet  MATH  Google Scholar 

  29. Kikuchi, N., Oden, J.T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM Studies in Applied Mathematics, vol. 8. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1988)

    Google Scholar 

  30. Kikuchi, N., Song, Y.J.: Penalty-finite-element approximation of a class of unilateral problems in linear elasticity. Q. Appl. Math. 39, 1–22 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lions, J.L., Stampacchia, G.: Variational Inequalities. Commun. Pure Applied Math. XX, 493–519 (1967)

    Google Scholar 

  32. Mosco, U.: Approximation of the solutions of some variational inequalities. Ann. Scuola Norm. Sup. Pisa (3) 21, 373–394 (1967); erratum, ibid. (3) 21, 765 (1967)

    Google Scholar 

  33. Nochetto, R., Wahlbin, L.: Positivity preserving finite element approximation. Math. Comp. 71, 1405–1419 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Oden, J.T., Kim, S.J.: Interior penalty methods for finite element approximations of the Signorini problem in elastostatics. Comput. Math. Appl. 8(1), 35–56 (1982). https://doi.org/10.1016/0898-1221(82)90038-4

    Article  MathSciNet  MATH  Google Scholar 

  35. Scarpini, F., Vivaldi, M.A.: Error estimates for the approximation of some unilateral problems. RAIRO Anal. Numér. 11(2), 197–208 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  36. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54(190), 483–493 (1990). https://doi.org/10.2307/2008497

    Article  MathSciNet  MATH  Google Scholar 

  37. Steinbach, O., Wohlmuth, B., Wunderlich, L.: Trace and flux a priori error estimates in finite-element approximations of Signorni-type problems. IMA J. Numer. Anal. 36(3), 1072–1095 (2016). https://doi.org/10.1093/imanum/drv039

    Article  MathSciNet  MATH  Google Scholar 

  38. Strang, G.: Approximation in the finite element method. Numer. Math. 19, 81—98 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, F., Reddy, B.D.: A priori error analysis of virtual element method for contact problem. Fixed Point Theory Algorithms Sci. Eng. 2022, 10 (2022). https://doi.org/10.1186/s13663-022-00720-z

  40. Wohlmuth, B.I.: Variationally consistent discretization schemes and numerical algorithms for contact problems. Acta Numer. 20, 569–734 (2011). https://doi.org/10.1017/S0962492911000079

    Article  MathSciNet  MATH  Google Scholar 

  41. Ziemer, W.: Weakly Differentiable Functions. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chouly, F., Hild, P., Renard, Y. (2023). Finite Elements for Signorini. In: Finite Element Approximation of Contact and Friction in Elasticity. Advances in Mechanics and Mathematics(), vol 48. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-31423-0_5

Download citation

Publish with us

Policies and ethics

Navigation