Lagrange Finite Elements and Interpolation

  • Chapter
  • First Online:
Finite Element Approximation of Contact and Friction in Elasticity

Part of the book series: Advances in Mechanics and Mathematics ((ACM,volume 48))

  • 422 Accesses

Abstract

The aim of this chapter is to give a brief introduction to finite element spaces, and introduce some useful interpolation estimates in fractional order Sobolev spaces which will serve later on to establish corresponding a priori error estimates. For simplicity, we limit the presentation to Lagrange finite elements on triangular or tetrahedral meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 171.19
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allaire, G.: Numerical analysis and optimization. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  2. Arnold, D.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bazilevs, Y., Hughes, T.J.R.: Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput. Fluids 36(1), 12–26 (2007). https://doi.org/10.1016/j.compfluid.2005.07.012

    Article  MathSciNet  MATH  Google Scholar 

  4. Beirao da Vega, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(1), 199–214 (2013). https://doi.org/10.1142/S0218202512500492

  5. Bernardi, C., Girault, V.: A local regularization operator for triangular and quadrilateral finite elements. SIAM J. Numer. Anal. 35, 1893—1916 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bernardi, C., Maday, Y., Patera, A.T.: A new nonconforming approach to domain decomposition: the mortar element method. In: Nonlinear Partial Differential Equations and Their Applications. Collège de France Seminar, Vol. XI (Paris, 1989–1991), Pitman Res. Notes Math. Ser., vol. 299, pp. 13–51. Longman Sci. Tech., Harlow (1994)

    Google Scholar 

  7. Bernardi, C., Maday, Y., Rapetti, F.: Discrétisations variationnelles de problèmes aux limites elliptiques, Mathématiques & Applications (Berlin), vol. 45. Springer, Berlin (2004)

    MATH  Google Scholar 

  8. Bjørstad, P.E., Widlund, O.B.: Iterative methods for the solution of elliptic problems on regions partitioned into substructures. SIAM J. Numer. Anal. 23(6), 1097–1120 (1986). https://doi.org/10.1137/0723075

    Article  MathSciNet  MATH  Google Scholar 

  9. Bordas, S., Menk, A.: Partition of Unity Methods. Wiley, London (2023). https://books.google.cl/books?id=2ygSywAACAAJ

    Google Scholar 

  10. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. Texts in Applied Mathematics, vol. 15. Springer, New York (2007)

    Google Scholar 

  11. Burman, E., Claus, S., Hansbo, P., Larson, M.G., Massing, A.: CutFEM: discretizing geometry and partial differential equations. Int. J. Numer. Methods Eng. 104(7), 472–501 (2015). https://doi.org/10.1002/nme.4823

    Article  MathSciNet  MATH  Google Scholar 

  12. Chouly, F., Hild, P., Renard, Y.: Symmetric and non-symmetric variants of Nitsche’s method for contact problems in elasticity: theory and numerical experiments. Math. Comp. 84(293), 1089–1112 (2015). https://doi.org/10.1090/S0025-5718-2014-02913-X

    Article  MathSciNet  MATH  Google Scholar 

  13. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications, vol. 4. North-Holland Publishing, Amsterdam (1978).

    Google Scholar 

  14. Ciarlet, P.G.: The finite element method for elliptic problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. II. North-Holland Publishing, Amsterdam (1991)

    Google Scholar 

  15. Ciarlet, P.G., Wagschal, C.: Multipoint Taylor formulas and applications to the finite element method. Numer. Math. 17, 84–100 (1971). https://doi.org/10.1007/BF01395869

    Article  MathSciNet  MATH  Google Scholar 

  16. Cicuttin, M., Ern, A., Pignet, N.: Hybrid High-Order Methods—a Primer with Applications to Solid Mechanics. SpringerBriefs in Mathematics. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81477-9

  17. Cockburn, B., Di Pietro, D.A., Ern, A.: Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods. ESAIM Math. Model. Numer. Anal. 50(3), 635–650 (2016). https://doi.org/10.1051/m2an/2015051

    Article  MathSciNet  MATH  Google Scholar 

  18. Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis. Wiley, Chichester (2009). https://doi.org/10.1002/9780470749081

  19. Crouzeix, M., Thomée, V.: The stability in L p and \(W^1_p\) of the L 2-projection onto finite element function spaces. Math. Comp. 48(178), 521–532 (1987). https://doi.org/10.2307/2007825

  20. Demkowicz, L., Gopalakrishnan, J.: Analysis of the DPG method for the Poisson equation. SIAM J. Numer. Anal. 49(5), 1788–1809 (2011). https://doi.org/10.1137/100809799

    Article  MathSciNet  MATH  Google Scholar 

  21. Di Pietro, D.A., Droniou, J.: The Hybrid High-Order Method for Polytopal Meshes. MS&A. Modeling, Simulation and Applications, vol. 19. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37203-3

  22. Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 69. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-22980-0

  23. Domínguez, V., Sayas, F.J.: Stability of discrete liftings. C. R. Math. Acad. Sci. Paris 337(12), 805–808 (2003). https://doi.org/10.1016/j.crma.2003.10.025

    Article  MathSciNet  MATH  Google Scholar 

  24. Dupont, T., Scott, R.: Polynomial approximation of functions in Sobolev spaces. Math. Comp. 34, 441–463 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements. Applied Mathematical Sciences, vol. 159. Springer, New York (2004)

    Google Scholar 

  26. Ern, A., Guermond, J.L.: Finite elements I—Approximation and Interpolation. Texts in Applied Mathematics, vol. 72. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-56341-7

  27. Ern, A., Guermond, J.L.: Finite elements II—Galerkin approximation, elliptic and mixed PDEs. Texts in Applied Mathematics, vol. 73. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-56923-5

  28. Ern, A., Guermond, J.L.: Finite Elements III—First-Order and Time-Dependent PDEs. Texts in Applied Mathematics, vol. 74. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-57348-5

  29. Fortin, A., Garon, A.: Les éléments finis: de la théorie à la pratique (2020). Notes de cours, Université Laval, Québec (450 p.). https://giref.ulaval.ca/afortin/elements_finis.pdf

  30. Fritz, A., Hüeber, S., Wohlmuth, B.I.: A comparison of mortar and Nitsche techniques for linear elasticity. Universität Stuttgart, IANS Preprint (8) (2003)

    Google Scholar 

  31. Fritz, A., Hüeber, S., Wohlmuth, B.I.: A comparison of mortar and Nitsche techniques for linear elasticity. Calcolo 41(3), 115–137 (2004). https://doi.org/10.1007/s10092-004-0087-4

    Article  MathSciNet  MATH  Google Scholar 

  32. Glowinski, R., Pan, T., Périaux, J.: A fictitious domain method for Dirichlet problem and applications. Comput. Methods Appl. Mech. Eng. 111(3-4), 283–303 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  33. Haslinger, J., Renard, Y.: A new fictitious domain approach inspired by the extended finite element method. SIAM J. Numer. Anal. 47(2), 1474–1499 (2009). https://doi.org/10.1137/070704435

    Article  MathSciNet  MATH  Google Scholar 

  34. Heuer, N.: Additive Schwarz method for the p-version of the boundary element method for the single layer potential operator on a plane screen. Numer. Math. 88(3), 485–511 (2001). https://doi.org/10.1007/s211-001-8012-7

    Article  MathSciNet  MATH  Google Scholar 

  35. Johnson, C.: Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  36. Lemaire, S.: Bridging the hybrid high-order and virtual element methods. IMA J. Numer. Anal. 41(1), 549–593 (2021). https://doi.org/10.1093/imanum/drz056

    Article  MathSciNet  MATH  Google Scholar 

  37. Lesaint, P., Raviart, P.A.: On a finite element method for solving the neutron transport equation. In: Mathematical Aspects of Finite Elements in Partial Differential Equations (Proceedings of Symposium Mathematics Resolution Center, Univ. Wisconsin, Madison, Wis., 1974), Publication No. 33, pp. 89–123. Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York (1974)

    Google Scholar 

  38. Lozinski, A.: A primal discontinuous Galerkin method with static condensation on very general meshes. Numer. Math. 143(3), 583–604 (2019). https://doi.org/10.1007/s00211-019-01067-1

    Article  MathSciNet  MATH  Google Scholar 

  39. Moës, N., Béchet, E., Tourbier, M.: Imposing Dirichlet boundary conditions in the extended finite element method. Int. J. Numer. Methods Eng. 67(12), 1641–1669 (2006). https://doi.org/10.1002/nme.1675

    Article  MathSciNet  MATH  Google Scholar 

  40. Nguyen, V.P., Anitescu, C., Bordas, S.P.A., Rabczuk, T.: Isogeometric analysis: an overview and computer implementation aspects. Math. Comput. Simul. 117, 89–116 (2015). https://doi.org/10.1016/j.matcom.2015.05.008

    Article  MathSciNet  MATH  Google Scholar 

  41. Nguyen, V.P., Rabczuk, T., Bordas, S., Duflot, M.: Meshless methods: a review and computer implementation aspects. Math. Comput. Simul. 79(3), 763–813 (2008). https://doi.org/10.1016/j.matcom.2008.01.003

    Article  MathSciNet  MATH  Google Scholar 

  42. Nicolaides, R.A.: On a class of finite elements generated by Lagrange interpolation. SIAM J. Numer. Anal. 9, 435–445 (1972). https://doi.org/10.1137/0709039

    Article  MathSciNet  MATH  Google Scholar 

  43. Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 479–517 (2002). https://doi.org/10.1017/S0962492902000077

    Article  MathSciNet  MATH  Google Scholar 

  44. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer Series in Computational Mathematics, vol. 23. Springer, Berlin (1994)

    Google Scholar 

  45. Raviart, P.A., Thomas, J.M.: Introduction à l’analyse numérique des équations aux dérivées partielles. Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree]. Masson, Paris (1983)

    Google Scholar 

  46. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54(190), 483–493 (1990). https://doi.org/10.2307/2008497

    Article  MathSciNet  MATH  Google Scholar 

  47. Steinbach, O.: Numerical Approximation Methods for Elliptic Boundary Value Problems. Springer, New York (2008). https://doi.org/10.1007/978-0-387-68805-3. Finite and boundary elements, Translated from the 2003 German original

  48. Steinbach, O., Wohlmuth, B., Wunderlich, L.: Trace and flux a priori error estimates in finite-element approximations of Signorni-type problems. IMA J. Numer. Anal. 36(3), 1072–1095 (2016). https://doi.org/10.1093/imanum/drv039

    Article  MathSciNet  MATH  Google Scholar 

  49. Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall Series in Automatic Computation. Prentice-Hall, Englewood Cliffs (1973)

    Google Scholar 

  50. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer Series in Computational Mathematics, vol. 25. Springer, Berlin (1997)

    Google Scholar 

  51. Warburton, T., Hesthaven, J.S.: On the constants in hp-finite element trace inverse inequalities. Comput. Methods Appl. Mech. Eng. 192(25), 2765–2773 (2003). https://doi.org/10.1016/S0045-7825(03)00294-9

    Article  MathSciNet  MATH  Google Scholar 

  52. Zlámal, M.: On the finite element method. Numer. Math. 12, 394–409 (1968). https://doi.org/10.1007/BF02161362

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chouly, F., Hild, P., Renard, Y. (2023). Lagrange Finite Elements and Interpolation. In: Finite Element Approximation of Contact and Friction in Elasticity. Advances in Mechanics and Mathematics(), vol 48. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-31423-0_4

Download citation

Publish with us

Policies and ethics

Navigation