Contact and Self-contact in Large Strain

  • Chapter
  • First Online:
Finite Element Approximation of Contact and Friction in Elasticity

Part of the book series: Advances in Mechanics and Mathematics ((ACM,volume 48))

  • 405 Accesses

Abstract

In many engineering applications, the elastic bodies in contact may undergo large transformations. In this case, a setting such as presented in Chap. 3 and in Chap. 10 is no longer valid, since it was restricted to small displacements and small strain. Taking into account large displacements and large strain, for instance in the hyperelastic framework, introduces many additional difficulties. First, one starts with losing many of the nice mathematical properties associated to the Signorini problem, notably the minimization problem does not involve anymore a quadratic functional and a convex set of admissible displacements. Therefore, it is much more challenging to study the well-posedness of the continuous problem, or to prove the convergence of the numerical methods. Moreover, difficulties appear in the formulation and numerical resolution of the contact and friction problems in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Astorino, M., Gerbeau, J.F., Pantz, O., Traoré, K.F.: Fluid-structure interaction and multi-body contact: application to aortic valves. Comput. Methods Appl. Mech. Eng. 198(45-46), 3603–3612 (2009). https://doi.org/10.1016/j.cma.2008.09.012

    Article  MathSciNet  MATH  Google Scholar 

  2. Bonet, J., Wood, R.D.: Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, Cambridge, New York (2008)

    Book  MATH  Google Scholar 

  3. Chouly, F., Hild, P., Renard, Y.: Méthodes de lagrangien et de Nitsche pour l’approximation numérique des conditions de contact avec frottement. Chapter 1 of Modélisation numérique en mécanique fortement non linéaire, pp. 8–52, 2023. Editors : Jacques Besson, Frédéric Lebon & Eric Lorentz. ISTE Editions (Collection Sciences). ISBN 978-1-78948-081-8.

    Google Scholar 

  4. Ciarlet, P.G.: Mathematical Elasticity. vol. I. Studies in Mathematics and Its Applications, vol. 20. North-Holland Publishing, Amsterdam (1988). Three-dimensional elasticity

    Google Scholar 

  5. Curnier, A., He, Q.C., Klarbring, A.: Continuum mechanics modelling of large deformation contact with friction. In: Contact Mechanics, pp. 145–158. Springer, Berlin (1995)

    Google Scholar 

  6. Fortin, A., Garon, A.: Les éléments finis: de la théorie à la pratique (2020). Notes de cours, Université Laval, Québec (450 p.). https://giref.ulaval.ca/afortin/elements_finis.pdf

  7. Gurtin, M.E.: An Introduction to Continuum Mechanics. Mathematics in Science and Engineering, vol. 158. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London (1981)

    Google Scholar 

  8. Kikuchi, N., Oden, J.T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM Studies in Applied Mathematics, vol. 8. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1988)

    Google Scholar 

  9. Laursen, T.A.: Computational Contact and Impact Mechanics. Springer, Berlin (2002)

    MATH  Google Scholar 

  10. Laursen, T.A., Simo, J.C.: Algorithmic symmetrization of Coulomb frictional problems using augmented Lagrangians. Comput. Methods Appl. Mech. Eng. 108(1-2), 133–146 (1993). https://doi.org/10.1016/0045-7825(93)90157-S

    Article  MathSciNet  MATH  Google Scholar 

  11. Laursen, T.A., Simo, J.C.: A continuum-based finite element formulation for the implicit solution of multibody, large deformation frictional contact problems. Int. J. Numer. Methods Eng. 36(20), 3451–3485 (1993). https://doi.org/10.1002/nme.1620362005

    Article  MathSciNet  MATH  Google Scholar 

  12. Lengiewicz, J., Korelc, J., Stupkiewicz, S.a.: Automation of finite element formulations for large deformation contact problems. Int. J. Numer. Methods Eng. 85(10), 1252–1279 (2011). https://doi.org/10.1002/nme.3009

  13. Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Dover Publications, New York (1994). Corrected reprint of the 1983 original

    Google Scholar 

  14. Mlika, R., Renard, Y., Chouly, F.: An unbiased Nitsche’s formulation of large deformation frictional contact and self-contact. Comput. Methods Appl. Mech. Eng. 325, 265–288 (2017). https://doi.org/10.1016/j.cma.2017.07.015

    Article  MathSciNet  MATH  Google Scholar 

  15. Pantz, O.: The modeling of deformable bodies with frictionless (self-)contacts. Arch. Ration. Mech. Anal. 188(2), 183–212 (2008). https://doi.org/10.1007/s00205-007-0091-3

    Article  MathSciNet  MATH  Google Scholar 

  16. Pantz, O.: A frictionless contact algorithm for deformable bodies. ESAIM Math. Model. Numer. Anal. 45(2), 235–254 (2011). https://doi.org/10.1051/m2an/2010041

    Article  MathSciNet  MATH  Google Scholar 

  17. Poulios, K., Renard, Y.: An unconstrained integral approximation of large sliding frictional contact between deformable solids. Comput. Struct. 153, 75–90 (2015). https://hal.archives-ouvertes.fr/hal-00937569

    Article  Google Scholar 

  18. Puso, M.A., Solberg, J.M.: A dual pass mortar approach for unbiased constraints and self-contact. Comput. Methods Appl. Mech. Eng. 367, 113092, 33 (2020). https://doi.org/10.1016/j.cma.2020.113092

  19. Renard, Y., Poulios, K.: GetFEM: Automated FE modeling of multiphysics problems based on a generic weak form language. ACM Trans. Math. Softw. 47(1), 1–31 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sauer, R.A., De Lorenzis, L.: An unbiased computational contact formulation for 3D friction. Int. J. Numer. Methods Eng. 101(4), 251–280 (2015). https://doi.org/10.1002/nme.4794

    Article  MathSciNet  MATH  Google Scholar 

  21. Seitz, A., Wall, W.A., Popp, A.: Nitsche’s method for finite deformation thermomechanical contact problems. Comput. Mech. 63(6), 1091–1110 (2019). https://doi.org/10.1007/s00466-018-1638-x

    Article  MathSciNet  MATH  Google Scholar 

  22. Simo, J.C., Laursen, T.A.: An augmented Lagrangian treatment of contact problems involving friction. Comput. Struct. 42(1), 97–116 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wriggers, P.: Computational Contact Mechanics. Wiley, London (2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chouly, F., Hild, P., Renard, Y. (2023). Contact and Self-contact in Large Strain. In: Finite Element Approximation of Contact and Friction in Elasticity. Advances in Mechanics and Mathematics(), vol 48. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-31423-0_11

Download citation

Publish with us

Policies and ethics

Navigation