Plant Disease Classification Using Hybrid Features

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1776))

Included in the following conference series:

  • 380 Accesses

Abstract

Deep learning has shown remarkable performances in image classification, including those of plants and leaves. However, high-performing networks in terms of accuracy may not be using the salient regions for making the prediction and could be prone to biases. This work proposes a neural network architecture incorporating handcrafted features and fusing them with the learned features. Using hybrid features provides better control and understanding of the feature space while leveraging deep learning capabilities. Furthermore, a new IoU-based metric is introduced to assess the CNN-based classifier’s performance based on the regions focused on making predictions. Experiments over multiple leaf disease datasets demonstrate the performance improvement with the model using hybrid features. Classification using hybrid features performed better than the baseline models in terms of P@1 and also on the IoU-based metric.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 96.29
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 128.39
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alexandratos, N., Bruinsma, J.: World agriculture towards 2030/2050: the 2012 revision (2012)

    Google Scholar 

  2. Atila, Ü., Uçar, M., Akyol, K., Uçar, E.: Plant leaf disease classification using efficientNet deep learning model. Eco. Inform. 61, 101182 (2021)

    Article  Google Scholar 

  3. Bae, W., Noh, J., Kim, G.: Rethinking Class Activation Map** for Weakly Supervised Object Localization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 618–634. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_37

    Chapter  Google Scholar 

  4. Barbedo, J.G.: Factors influencing the use of deep learning for plant disease recognition. Biosys. Eng. 172, 84–91 (2018)

    Article  Google Scholar 

  5. Brahimi, M., Boukhalfa, K., Moussaoui, A.: Deep learning for tomato diseases: classification and symptoms visualization. Appl. Artif. Intell. 31(4), 299–315 (2017)

    Article  Google Scholar 

  6. Chaerle, L., Lenk, S., Hagenbeek, D., Buschmann, C., Van Der Straeten, D.: Multicolor fluorescence imaging for early detection of the hypersensitive reaction to tobacco mosaic virus. J. Plant Physiol. 164(3), 253–262 (2007)

    Article  Google Scholar 

  7. Chouhan, S.S., Singh, U.P., Kaul, A., Jain, S.: A data repository of leaf images: Practice towards plant conservation with plant pathology. In: 2019 4th International Conference on Information Systems and Computer Networks (ISCON), pp. 700–707. IEEE (2019)

    Google Scholar 

  8. Cisternas, I., Velásquez, I., Caro, A., Rodríguez, A.: Systematic literature review of implementations of precision agriculture. Comput. Electron. Agric. 176, 105626 (2020)

    Article  Google Scholar 

  9. Cruz, A.C., Luvisi, A., De Bellis, L., Ampatzidis, Y.: X-FIDO: An effective application for detecting olive quick decline syndrome with deep learning and data fusion. Front. Plant Sci. 8, 1741 (2017)

    Article  Google Scholar 

  10. Çuğu, İ., et al.: Treelogy: A novel tree classifier utilizing deep and hand-crafted representations. ar**v preprint ar**v:1701.08291 (2017)

  11. Fenu, G., Malloci, F.M.: DiaMos plant: a dataset for diagnosis and monitoring plant disease. Agronomy 11(11), 2107 (2021)

    Article  Google Scholar 

  12. Ferentinos, K.P.: Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 145, 311–318 (2018)

    Article  Google Scholar 

  13. Fujita, E., Kawasaki, Y., Uga, H., Kagiwada, S., Iyatomi, H.: Basic investigation on a robust and practical plant diagnostic system. In: 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA). pp. 989–992. IEEE (2016)

    Google Scholar 

  14. Hossin, M., Sulaiman, M.N.: A review on evaluation metrics for data classification evaluations. Int. J. Data Min. knowl. Manag. Process 5(2), 1 (2015)

    Article  Google Scholar 

  15. Huang, Z., Huang, L., Gong, Y., Huang, C., Wang, X.: Mask scoring r-CNN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6409–6418 (2019)

    Google Scholar 

  16. Huertas-Tato, J., Martín, A., Fierrez, J., Camacho, D.: Fusing CNNS and statistical indicators to improve image classification. Information Fusion 79, 174–187 (2022)

    Article  Google Scholar 

  17. Hughes, D., Salathé, M., et al.: An open access repository of images on plant health to enable the development of mobile disease diagnostics. ar**v preprint ar**v:1511.08060 (2015)

  18. Islam, M., Dinh, A., Wahid, K., Bhowmik, P.: Detection of potato diseases using image segmentation and multiclass support vector machine. In: 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1–4. IEEE (2017)

    Google Scholar 

  19. Johannes, A., Picon, A., Alvarez-Gila, A., Echazarra, J., Rodriguez-Vaamonde, S., Navajas, A.D., Ortiz-Barredo, A.: Automatic plant disease diagnosis using mobile capture devices, applied on a wheat use case. Comput. Electron. Agric. 138, 200–209 (2017)

    Article  Google Scholar 

  20. Kamal, K., Yin, Z., Wu, M., Wu, Z.: Depthwise separable convolution architectures for plant disease classification. Comput. Electron. Agric. 165, 104948 (2019)

    Article  Google Scholar 

  21. Kawasaki, Y., Uga, H., Kagiwada, S., Iyatomi, H.: Basic study of automated diagnosis of viral plant diseases using convolutional neural networks. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Pavlidis, I., Feris, R., McGraw, T., Elendt, M., Kopper, R., Ragan, E., Ye, Z., Weber, G. (eds.) ISVC 2015. LNCS, vol. 9475, pp. 638–645. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27863-6_59

    Chapter  Google Scholar 

  22. Kaya, A., Keceli, A.S., Catal, C., Yalic, H.Y., Temucin, H., Tekinerdogan, B.: Analysis of transfer learning for deep neural network based plant classification models. Comput. Electron. Agric. 158, 20–29 (2019)

    Article  Google Scholar 

  23. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Google Scholar 

  24. Li, W., Abad, J.A., French-Monar, R.D., Rascoe, J., Wen, A., Gudmestad, N.C., Secor, G.A., Lee, M., Duan, Y., Levy, L.: Multiplex real-time PCR for detection, identification and quantification of ‘Candidatus liberibacter solanacearum’in potato plants with zebra chip. J. Microbiol. Methods 78(1), 59–65 (2009)

    Article  Google Scholar 

  25. Mohanty, S.P., Hughes, D.P., Salathé, M.: Using deep learning for image-based plant disease detection. Front. Plant Sci. 7, 1419 (2016)

    Article  Google Scholar 

  26. Muthireddy, V., Jawahar, C.V.: Computer vision for capturing flora. In: Mukhopadhyay, J., Sreedevi, I., Chanda, B., Chaudhury, S., Namboodiri, V.P. (eds.) Digital Techniques for Heritage Presentation and Preservation, pp. 245–272. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-57907-4_12

    Chapter  Google Scholar 

  27. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  MATH  Google Scholar 

  28. Patrício, D.I., Rieder, R.: Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Comput. Electron. Agric. 153, 69–81 (2018)

    Article  Google Scholar 

  29. Purcell, D.E., O’Shea, M.G., Johnson, R.A., Kokot, S.: Near-infrared spectroscopy for the prediction of disease ratings for fiji leaf gall in sugarcane clones. Appl. Spectrosc. 63(4), 450–457 (2009)

    Article  Google Scholar 

  30. Qin, F., Liu, D., Sun, B., Ruan, L., Ma, Z., Wang, H.: Identification of alfalfa leaf diseases using image recognition technology. PLoS ONE 11(12), e0168274 (2016)

    Article  Google Scholar 

  31. Ribeiro, M.T., Singh, S., Guestrin, C.: " why should i trust you?" explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp. 1135–1144 (2016)

    Google Scholar 

  32. Ruiz-Ruiz, S., Ambrós, S., del Carmen Vives, M., Navarro, L., Moreno, P., Guerri, J.: Detection and quantitation of citrus leaf blotch virus by taqman real-time rt-PCR. J. Virol. Methods 160(1–2), 57–62 (2009)

    Article  Google Scholar 

  33. Sankaran, S., Mishra, A., Maja, J.M., Ehsani, R.: Visible-near infrared spectroscopy for detection of huanglongbing in citrus orchards. Comput. Electr. Agric. 77, 127–134 (2011)

    Google Scholar 

  34. Saponari, M., Manjunath, K., Yokomi, R.K.: Quantitative detection of citrus tristeza virus in citrus and aphids by real-time reverse transcription-PCR (Taqman®). J. Virol. Methods 147(1), 43–53 (2008)

    Article  Google Scholar 

  35. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, vol. 128, pp. 336–359 (2017)

    Google Scholar 

  36. Shafi, U., Mumtaz, R., García-Nieto, J., Hassan, S.A., Zaidi, S.A.R., Iqbal, N.: Precision agriculture techniques and practices: From considerations to applications. Sensors 19(17), 3796 (2019)

    Article  Google Scholar 

  37. Singh, D., et al.: Plantdoc: a dataset for visual plant disease detection. In: Proceedings of the 7th ACM IKDD CoDS and 25th COMAD, pp. 249–253 (2020)

    Google Scholar 

  38. Singh, V., Misra, A.K.: Detection of plant leaf diseases using image segmentation and soft computing techniques. Information processing in Agriculture 4(1), 41–49 (2017)

    Article  Google Scholar 

  39. Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., Stefanovic, D.: Deep neural networks based recognition of plant diseases by leaf image classification. Computational intelligence and neuroscience 2016 (2016)

    Google Scholar 

  40. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 2818–2826 (2016)

    Google Scholar 

  41. Wang, H., Li, G., Ma, Z., Li, X.: Image recognition of plant diseases based on backpropagation networks. In: 2012 5th International Congress on Image and Signal Processing. pp. 894–900. IEEE (2012)

    Google Scholar 

  42. Wu, S., Li, X., Wang, X.: Iou-aware single-stage object detector for accurate localization. Image Vis. Comput. 97, 103911 (2020)

    Article  Google Scholar 

  43. Ye, W., Yao, J., Xue, H., Li, Y.: Weakly supervised lesion localization with probabilistic-cam pooling. ar**v preprint ar**v:2005.14480 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vamsidhar Muthireddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Muthireddy, V., Jawahar, C.V. (2023). Plant Disease Classification Using Hybrid Features. In: Gupta, D., Bhurchandi, K., Murala, S., Raman, B., Kumar, S. (eds) Computer Vision and Image Processing. CVIP 2022. Communications in Computer and Information Science, vol 1776. Springer, Cham. https://doi.org/10.1007/978-3-031-31407-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31407-0_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31406-3

  • Online ISBN: 978-3-031-31407-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation