Biosurfactants: An Antiviral Perspective

  • Chapter
  • First Online:
Multifunctional Microbial Biosurfactants

Abstract

Biosurfactants are surface-active amphiphilic substances mainly formed by microorganisms present in the environment, like Bacillus and Pseudomonas. They have various structures like glycolipids, lipopeptides, lipopolysaccharides, and fatty acids. Biosurfactants are readily biodegradable, non-toxic to the environment and exhibit substantial emulsification activities. Biosurfactants also exhibit antioxidant, antimicrobial, anti-aging, cytotoxicity, and anti-inflammatory activities. In this chapter, microbial biosurfactants and their antiviral activities using in vitro and in silico studies are discussed. Biosurfactants show antiviral activity against enveloped viruses since they have hydrophobic and hydrophilic moieties that interact with the envelope proteins of viruses. Surfactin is a lipopeptide that kills herpesvirus, retrovirus, and coronavirus due to its physicochemical interaction with viral membrane and presence of carbon atoms in surfactin’s acyl chain. Biosurfactants from Bacillus sp., Pseudomonas sp., Tolipocladium sp., Streptomyces sp., and Candida bombicola inhibit human immunodeficiency virus, coronavirus, herpes, and influenza viruses. It is predicted that biosurfactants might be the potential inhibitors of SARS-CoV-2. In vitro studies also proved that microbial biosurfactants such as rhamnolipids, surfactin, sophorolipids, glycolipids, lipopeptides, and polysaccharides inhibit porcine parvovirus, pseudorabies virus, Newcastle disease, and infectious Bursal disease viruses. Because of chemically synthesized antiviral drugs’ minimal availability and high toxicity, novel antiviral drugs are needed to manage human viral infections. Biosurfactants could be an alternative to current chemical antiviral drugs due to their low toxicity and compatibility. However, more studies using animal models and human trials have to be conducted to recognize biosurfactants as promising antiviral drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelli F, Jardak M, Elloumi J, Stien D, Cherif S, Mnif S, Aifa S (2019) Antibacterial, anti-adherent and cytotoxic activities of surfactin (s) from a lipolytic strain Bacillus safensis F4. Biodegradation 30:287–300

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Mawgoud AM, Lépine F, Déziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86:1323–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alizadeh-Sani M, Hamishehkar H, Khezerlou A, Azizi-Lalabadi M, Azadi Y, Nattagh-Eshtivani E, Fasihi M, Ghavami A, Aynehchi A, Ehsani A (2018) Bioemulsifiers derived from microorganisms: applications in the drug and food industry. Adv Pharm Bull 8:191–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptidelipid surfactant produced by Bacillussubtilis: isolation, characterisation and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 31:488–494

    Article  CAS  PubMed  Google Scholar 

  • Azim A, Shah V, Doncel GF, Peterson N, Gao W, Gross R (2006) Amino acid conjugated sophorolipids: a new family of biologically active functionalized glycolipids. Bioconjug Chem 17:1523–1529

    Article  CAS  PubMed  Google Scholar 

  • Balakrishnan S, Arunagirinathan N, Rameshkumar MR, Indu P, Vijaykanth N, Almaary KS, Almutairi SM, Chen T-W (2022) Molecular characterisation of biosurfactant producing marine bacterium isolated from hydrocarbon-contaminated soil using 16S rRNA gene sequencing. J King Saud Univ Sci 34:101871

    Article  Google Scholar 

  • Bhadoriya SS, Madoriya N (2013) Biosurfactants: a new pharmaceutical additive for solubility enhancement and pharmaceutical development. Biochem Pharmacol 2:2

    Article  Google Scholar 

  • Bicca FC, Fleck LC, Ayub MAZ (1999) Production of biosurfactant by hydrocarbon degrading Rhodococcus ruber and Rhodococcus erythropolis. Rev Microbiol 30:231–236

    Article  CAS  Google Scholar 

  • Busscher HJ, van Hoogmoed CG, Geertsema-Doornbusch GI, van der Kuijl-Booij M, van der Mei HC (1997) Streptococcus thermophilus and its biosurfactants inhibit adhesion by Candida spp. on silicone rubber. Appl Environ Microbiol 63:3810–3817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai M, Nie Y, Chi C-Q, Tang Y-Q, Li Y, Wang X-B, Liu Z-S, Yang Y, Zhou J, Wu X-L (2015) Crude oil as a microbial seed bank with unexpected functional potentials. Sci Rep 5:16057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cajka T, Garay LA, Sitepu IR, Boundy-Mills KL, Fiehn O (2016) Multiplatform mass spectrometry-based approach identifies extracellular glycolipids of the yeast Rhodotorula babjevae UCDFST 04-877. J Nat Prod 79:2580–2589

    Article  CAS  PubMed  Google Scholar 

  • Calvo CF, Martínez-Checa F, Toledo FL, Porcel J, Quesada E (2002) Characteristics of bioemulsifiers synthesised in crude oil media by Halomonas eurihalina and their effectiveness in the isolation of bacteria able to grow in the presence of hydrocarbons. Appl Microbiol Biotechnol 60:347–351

    Article  CAS  PubMed  Google Scholar 

  • Camargo FP, Menezes AJ, de Tonello PS, Dos Santos ACA, Duarte ICS (2018) Characterisation of biosurfactant from yeast using residual soybean oil under acidic conditions and their use in metal removal processes. FEMS Microbiol Lett 365:fny098

    Article  Google Scholar 

  • Canet R, Birnstingl JG, Malcolm DG, Lopez-Real JM, Beck AJ (2001) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by native microflora and combinations of white-rot fungi in a coal-tar contaminated soil. Bioresour Technol 76:113–117

    Article  CAS  PubMed  Google Scholar 

  • Cappelletti M, Presentato A, Piacenza E, Firrincieli A, Turner RJ, Zannoni D (2020) Biotechnology of Rhodococcus for the production of valuable compounds. Appl Microbiol Biotechnol 104:8567–8594

    Article  PubMed  PubMed Central  Google Scholar 

  • Chandankere R, Yao J, Cai M, Masakorala K, Jain AK, Choi MMF (2014) Properties and characterisation of biosurfactant in crude oil biodegradation by bacterium Bacillus methylotrophicus USTBa. Fuel 122:140–148

    Article  CAS  Google Scholar 

  • Chen J, Song X, Zhang H, Qu Y, Miao J (2006) Sophorolipid produced from the new yeast strain Wickerhamiella domercqiae induces apoptosis in H7402 human liver cancer cells. Appl Microbiol Biotechnol 72:52–59

    Article  CAS  PubMed  Google Scholar 

  • Cheng W, Ren J, **g D, Wang C (2016) Anti-tumor role of Bacillus subtilis fmbJ-derived fengycin on human colon cancer HT29 cell line. Neoplasma 63:215–222

    CAS  PubMed  Google Scholar 

  • Chereshnev VA, Gein SV, Baeva TA, Galkina TV, Kuyukina MS, Ivshina IB (2010) Modulation of cytokine secretion and oxidative metabolism of innate immune effectors by Rhodococcus biosurfactant. Bull Exp Biol Med 149:734–738

    Article  CAS  PubMed  Google Scholar 

  • Chiewpattanakul P, Phonnok S, Durand A, Marie E, Thanomsub BW (2010) Bioproduction and anticancer activity of biosurfactant produced by the dematiaceous fungus Exophiala dermatitidis SK80. J Microbiol Biotechnol 20:1664–1671

    CAS  PubMed  Google Scholar 

  • Chikkanna A, Ghosh D, Kishore A (2018) Expression and characterisation of a potential exopolysaccharide from a newly isolated halophilic thermotolerant bacteria Halomonas nitroreducens strain WB1. Peer J 6:e4684

    Article  PubMed  PubMed Central  Google Scholar 

  • Chowdhury T, Baindara P, Mandal SM (2021) LPD-12: a promising lipopeptide to control COVID-19. Int J Antimicrob Agents 57:106218

    Article  CAS  PubMed  Google Scholar 

  • Christova N, Tuleva B, Kril A, Georgieva M, Konstantinov S, Terziyski I, Nikolova B, Stoineva I (2013) Chemical structure and in vitro antitumor activity of rhamnolipids from Pseudomonas aeruginosa BN10. Appl Biochem Biotechnol 170:676–689

    Article  CAS  PubMed  Google Scholar 

  • Cochrane SA, Vederas JC (2016) Lipopeptides from Bacillus and Paenibacillus spp.: a gold mine of antibiotic candidates: Bacillus and Paenibacillus lipopeptides. Med Res Rev 36:4–31

    Article  CAS  PubMed  Google Scholar 

  • Colpitts CC, Ustinov AV, Epand RF, Epand RM, Korshun VA, Schang LM (2013) 5-(Perylen-3-yl)Ethynyl-arabino-Uridine (aUY11), an arabino-based rigid amphipathic fusion inhibitor, targets virion envelope lipids to inhibit fusion of influenza virus, hepatitis C virus, and other enveloped viruses. J Virol 87:3640–3654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper DG, Goldenberg BG (1987) Surface-active agents from two Bacillus species. Appl Environ Microbiol 53:224–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da Silva AF, Banat IM, Giachini AJ, Robl D (2021) Fungal biosurfactants, from nature to biotechnological product: bioprospection, production and potential applications. Bioprocess Biosyst Eng 44:2003–2034

    Article  PubMed  PubMed Central  Google Scholar 

  • Das P, Yang X-P, Ma LZ (2014) Analysis of biosurfactants from industrially viable Pseudomonas strain isolated from crude oil suggests how rhamnolipids congeners affect emulsification property and antimicrobial activity. Front Microbiol 5:696

    Article  PubMed  PubMed Central  Google Scholar 

  • Dastgheib SMM, Amoozegar MA, Elahi E, Asad S, Banat IM (2008) Bioemulsifier production by a halothermophilic Bacillus strain with potential applications in microbially enhanced oil recovery. Biotechnol Lett 30:263–270

    Article  CAS  PubMed  Google Scholar 

  • Daverey A, Dutta K, Joshi S, Daverey A (2021) Sophorolipid: a glycolipid biosurfactant as a potential therapeutic agent against COVID-19. Bioengineered 12:9550–9560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duarte C, Gudiña EJ, Lima CF, Rodrigues LR (2014) Effects of biosurfactants on the viability and proliferation of human breast cancer cells. AMB Expr 4:40

    Article  Google Scholar 

  • Edosa TT, Hun Jo Y, Keshavarz M, Soo Han Y (2018) Biosurfactants: production and potential application in insect pest management. Trends Entomol 14:79–87

    Article  Google Scholar 

  • Elshafie AE, Joshi SJ, Al-Wahaibi YM, Al-Bemani AS, Al-Bahry SN, Al-Maqbali D, Banat IM (2015) Sophorolipids production by Candida bombicola ATCC 22214 and its potential application in microbial enhanced oil recovery. Front Microbiol 6:1324

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Sheshtawy HS, Doheim MM (2014) Selection of Pseudomonas aeruginosa for biosurfactant production and studies of its antimicrobial activity. Egypt J Pet 23:1–6

    Article  Google Scholar 

  • Falagas ME, Makris GC (2009) Probiotic bacteria and biosurfactants for nosocomial infection control: a hypothesis. J Hosp Infect 71:301–306

    Article  CAS  PubMed  Google Scholar 

  • Farn RJ (ed) (2006) Chemistry and technology of surfactants. Blackwell Publishing Ltd, Oxford

    Google Scholar 

  • Finnerty WR (1992) The biology and genetics of the genus Rhodococcus. Annu Rev Microbiol 46:193–218

    Article  CAS  PubMed  Google Scholar 

  • Franzetti A, Gandolfi I, Bestetti G, Smyth TJP, Banat IM (2010) Production and applications of trehalose lipid biosurfactants. Eur J Lipid Sci Technol 112:617–627

    Article  CAS  Google Scholar 

  • Gan BS, Kim J, Reid G, Cadieux P, Howard JC (2002) Lactobacillus fermentum RC-14 inhibits Staphylococcus aureus infection of surgical implants in rats. J Infect Dis 185:1369–1372

    Article  PubMed  Google Scholar 

  • Garay LA, Sitepu IR, Cajka T, Fiehn O, Cathcart E, Fry RW, Kanti A, Joko Nugroho A, Faulina SA, Stephanandra S, German JB, Boundy-Mills KL (2017) Discovery of synthesis and secretion of polyol esters of fatty acids by four basidiomycetous yeast species in the order Sporidiobolales. J Ind Microbiol Biotechnol 44:923–936

    Article  CAS  PubMed  Google Scholar 

  • Gayathiri E, Prakash P, Karmegam N, Varjani S, Awasthi MK, Ravindran B (2022) Biosurfactants: potential and eco-friendly material for sustainable agriculture and environmental safety—a review. Agronomy 12:662

    Article  CAS  Google Scholar 

  • Giugliano R, Buonocore C, Zannella C, Chianese A, Palma Esposito F, Tedesco P, De Filippis A, Galdiero M, Franci G, de Pascale D (2021) Antiviral activity of the rhamnolipids mixture from the antarctic bacterium Pseudomonas gessardii M15 against herpes simplex viruses and coronaviruses. Pharmaceutics 13:2121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross RA, Shah V (2007) Anti-herpes virus properties of various forms of sophorolipids. Patent WO2007130738 A1

    Google Scholar 

  • Gross RA, Shah V, Doncel G (2004) Spermicidal and virucidal properties of various forms of sophorolipids. Patent US 20040242501 A1

    Google Scholar 

  • Guerra-Santos Luis H, Kappeli O, Fiechter A (1986) Dependence of Pseudomonas aeruginosa continous culture biosurfactant production on nutritional and environmental factors. Appl Microbiol Biotechnol 24:443–448

    Google Scholar 

  • Hamamoto I, Harazaki K, Inase N, Takaku H, Tashiro M, Yamamoto N (2013) Cyclosporin a inhibits the propagation of influenza virus by interfering with a late event in the virus life cycle. Jpn J Infect Dis 66:276–283

    Article  CAS  PubMed  Google Scholar 

  • Harris SP, Fujiwara N, Mealey RH, Alperin DC, Naka T, Goda R, Hines SA (2010) Identification of Rhodococcus equi lipids recognised by host cytotoxic T lymphocytes. Microbiology 156:1836–1847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hazra C, Kundu D, Chaudhari A, Jana T (2013) Biogenic synthesis, characterisation, toxicity and photocatalysis of zinc sulfide nanoparticles using rhamnolipids from Pseudomonas aeruginosa BS01 as cap** and stabilising agent: Rhamnolipid biosurfactant capped zinc sulfide nanoparticles. J Chem Technol Biotechnol 88:1039–1048

    Article  CAS  Google Scholar 

  • Huang X, Lu Z, Zhao H, Bie X, Lü F, Yang S (2006) Antiviral activity of antimicrobial Lipopeptide from Bacillus subtilis fmbj against pseudorabies virus, porcine parvovirus, newcastledisease virus and infectious bursal disease virus in vitro. Int J Pept Res Ther 12:373–377

    Article  Google Scholar 

  • Inès M, Dhouha G (2015) Glycolipid biosurfactants: potential related biomedical and biotechnological applications. Carbohydr Res 416:59–69

    Article  PubMed  Google Scholar 

  • Isoda H, Shinmoto H, Matsumura M, Nakahara T (1996) Succinoyl trehalose lipid induced differentiation of human monocytoid leukemic cell line U937 into monocyte-macrophages. Cytotechnology 19:79–88

    Article  CAS  Google Scholar 

  • Jiang J, Zhang H, Zhang C, Han M, Du J, Yang X, Li W (2021) Production, purification and characterization of 'Iturin A-2′ a Lipopeptide with antitumor activity from Chinese sauerkraut bacterium Bacillus velezensis T701. Int J Pept Res Ther 27:2135–2147

    Article  CAS  Google Scholar 

  • ** L, Black W, Sawyer T (2021) Application of environment-friendly rhamnolipids against transmission of enveloped viruses like SARS-CoV2. Viruses 13:322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan N, Rosenberg E, Jann B, Jann K (1985) Structural studies of the capsular polysaccharide of Acinetobacter calcoaceticus BD4. Eur J Biochem 152:453–458

    Article  CAS  PubMed  Google Scholar 

  • Khan TN (2017) Cyclosporin A production from Tolipocladium inflatum. Gen Med 5:4

    Google Scholar 

  • Khodavirdipour A (2021) Inclusion of Cephalexin in COVID-19 treatment combinations may prevent lung involvement in mild infections: a case report with pharmacological genomics perspective. Global Med Genet 08:078–081

    Article  Google Scholar 

  • Khodavirdipour A, Chamanrokh P, Alikhani MY, Alikhani MS (2022) Potential of Bacillus subtilis against SARS-CoV-2 – a sustainable drug development perspective. Front Microbiol 13:718786

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim SH, Lim EJ, Lee SO, Lee JD, Lee TH (2000) Purification and characterisation of biosurfactants from Nocardia sp. L-417. Biotechnol Appl Biochem 31:249

    Article  PubMed  Google Scholar 

  • Kim K, Dalson Y, Youngbum K, Baekseok L, Doonhoon S, Eun-Ki K (2002) Characteristics of sophorolipid as an antimicrobial agent. J Microbiol Biotechnol 12:235–241

    CAS  Google Scholar 

  • Kokoulin MS, Filshtein AP, Romanenko LA, Chikalovets IV, Chernikov OV (2020) Structure and bioactivity of sulfated α-D-mannan from marine bacterium Halomonas halocynthiae KMM 1376T. Carbohydr Polym 229:115556

    Article  CAS  PubMed  Google Scholar 

  • Kourmentza C, Freitas F, Alves V, Reis MAM (2017) Microbial conversion of waste and surplus materials into high-value added products: the case of biosurfactants. In: Kalia VC, Kumar P (eds) Microbial applications, vol 1. Springer, Cham, pp 29–77

    Chapter  Google Scholar 

  • Kourmentza K, Gromada X, Michael N, Degraeve C, Vanier G, Ravallec R, Coutte F, Karatzas KA, Jauregi P (2021) Antimicrobial activity of lipopeptide biosurfactants against foodborne pathogen and food spoilage microorganisms and their cytotoxicity. Front Microbiol 11:561060

    Article  PubMed  PubMed Central  Google Scholar 

  • Kracht M, Rokos H, Özel M, Kowall M, Pauli G, Vater J (1999) Antiviral and hemolytic activities of Surfactin isoforms and their methyl ester derivatives. J Antibiot 52:613–619

    Article  CAS  Google Scholar 

  • Kumar A, Singh SK, Kant C, Verma H, Kumar D, Singh PP, Modi A, Droby S, Kesawat MS, Alavilli H, Bhatia SK, Saratale GD, Saratale RG, Chung S-M, Kumar M (2021) Microbial biosurfactant: a new frontier for sustainable agriculture and pharmaceutical industries. Antioxidants 10:1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuraoka T, Yamada T, Ishiyama A, Oyamada H, Ogawa Y, Kobayashi H (2020) Determination of α-1,3-linked mannose residue in the cell wall mannan of Candida tropicalis NBRC 1400 strain. Adv Microbiol 10:14–26

    Article  CAS  Google Scholar 

  • Kuyukina MS, Ivshina IB, Baeva TA, Kochina OA, Gein SV, Chereshnev VA (2015) Trehalolipid biosurfactants from nonpathogenic Rhodococcus actinobacteria with diverse immunomodulatory activities. New Biotechnol 32:559–568

    Article  CAS  Google Scholar 

  • Lanéelle G (1998) Mycobacterial lipids a historical perspective. Front Biosci 3:e164–e174

    Article  PubMed  Google Scholar 

  • Liu X, Tao X, Zou A, Yang S, Zhang L, Mu B (2010) Effect of themicrobial lipopeptide on tumor cell lines: apoptosis induced by disturbing the fatty acid composition of cell membrane. Protein Cell 1:584–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loeto D, Jongman M, Lekote L, Muzila M, Mokomane M, Motlhanka K, Ndlovu T, Zhou N (2021) Biosurfactant production by halophilic yeasts isolated from extreme environments in Botswana. FEMS Microbiol Lett 368:fnab 146

    Article  CAS  Google Scholar 

  • McClements DJ, Gumus CE (2016) Natural emulsifiers—biosurfactants, phospholipids, biopolymers, and colloidal particles: molecular and physicochemical basis of functional performance. Adv Colloid Interf Sci 234:3–26

    Article  CAS  Google Scholar 

  • Meena KR, Kanwar SS (2015) Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. Bio Med Res Int 2015:1–9

    Google Scholar 

  • Meena KR, Sharma A, Kanwar SS (2020) Antitumoral and antimicrobial activity of Surfactin extracted from Bacillus subtilis KLP 2015. Int J Pept Res Ther 26:423–433

    Article  CAS  Google Scholar 

  • Mnif I, Ghribi D (2015) Review lipopeptides biosurfactants: mean classes and new insights for industrial, biomedical, and environmental applications: Lipopeptides biosurfactants and their applications. Biopolymers 104:129–147

    Article  CAS  PubMed  Google Scholar 

  • Morais IMC, Cordeiro AL, Teixeira GS, Domingues VS, Nardi RMD, Monteiro AS, Alves RJ, Siqueira EP, Santos VL (2017) Biological and physicochemical properties of biosurfactants produced by Lactobacillus jensenii P6A and Lactobacillus gasseri P65. Microb Cell Factories 16:155

    Article  CAS  Google Scholar 

  • Müller MM, Hausmann R (2011) Regulatory and metabolic network of rhamnolipid biosynthesis: traditional and advanced engineering towards biotechnological production. Appl Microbiol Biotechnol 91:251–264

    Article  PubMed  Google Scholar 

  • Nakanishi M, Inoh Y, Kitamoto D, Furuno T (2009) Nano vectors with a biosurfactant for gene transfection and drug delivery. J Drug Deliv Sci Technol 19:165–169

    Article  CAS  Google Scholar 

  • Naruse N, Tenmyo O, Kobaru S, Kamei H, Miyaki T, Konishi M, Oki T (1990) Pumilacidin, a complex of new antiviral antibiotics. Production, isolation, chemical properties, structure and biological activity. J Antibiot 43:267–280

    Article  CAS  Google Scholar 

  • Nayarisseri A, Singh P, Singh SK (2018) Screening, isolation and characterisation of biosurfactant producing Bacillus subtilis strain ANSKLAB03. Bioinformation 14:304

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohadi M, Forootanfar H, Dehghannoudeh G, Eslaminejad T, Ameri A, Shakibaie M, Adeli-Sardou M (2020) Antimicrobial, anti-biofilm, and anti-proliferative activities of lipopeptide biosurfactant produced by Acinetobacter junii B6. Microb Pathog 138:103806

    Article  CAS  PubMed  Google Scholar 

  • Parthipan P, Preetham E, Machuca LL, Rahman PKSM, Murugan K, Rajasekar A (2017) Biosurfactant and degradative enzymes mediated crude oil degradation by bacterium Bacillus subtilis A1. Front Microbiol 8:193

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng JY, Horng YB, Wu CH, Chang CY, Chang YC, Tsai PS, Jeng CR, Cheng YH, Chang HW (2019) Evaluation of antiviral activity of Bacillus licheniformis-fermented products against porcine epidemic diarrhea virus. AMB Expr 9:191

    Article  CAS  Google Scholar 

  • Perez KJ, Viana J, Dos S, Lopes FC, Pereira JQ, dos Santos DM, Oliveira JS, Velho RV, Crispim SM, Nicoli JR, Brandelli A, RMD N (2017) Bacillus spp. isolated from Puba as a source of biosurfactants and antimicrobial lipopeptides. Front Microbiol 8:61

    Article  PubMed  PubMed Central  Google Scholar 

  • Price NPJ, Manitchotpisit P, Vermillion KE, Bowman MJ, Leathers TD (2013) Structural characterisation of novel extracellular liamocins (mannitol oils) produced by Aureobasidium pullulans strain NRRL 50380. Carbohydr Res 370:24–32

    Article  CAS  PubMed  Google Scholar 

  • Prieto LM, Michelon M, Burkert JFM, Kalil SJ, Burkert CAV (2008) The production of rhamnolipid by a Pseudomonas aeruginosa strain isolated from a southern coastal zone in Brazil. Chemosphere 71:1781–1785

    Article  CAS  PubMed  Google Scholar 

  • Rani M, Weadge JT, Jabaji S (2020) Isolation and characterisation of biosurfactant-producing bacteria from oil well batteries with antimicrobial activities against food-borne and plant pathogens. Front Microbiol 11:64

    Article  PubMed  PubMed Central  Google Scholar 

  • Remichkova M, Galabova D, Roeva I, Karpenko E, Shulga A, Galabov AS (2008) Anti-herpesvirus activities of Pseudomonas sp. S-17 Rhamnolipid and its complex with alginate. Z Naturforsch C J Biosci 63:75–81

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro BG, Guerra JMC, Sarubbo LA (2020) Potential food application of a biosurfactant produced by Saccharomyces cerevisiae URM 6670. Front Bioeng Biotechnol 8:434

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodrigues L, van der Mei HC, Teixeira J, Oliveira R (2004) Influence of biosurfactants from probiotic bacteria on formation of biofilms on voice prostheses. Appl Environ Microbiol 70:4408–4410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57:609–618

    Article  CAS  PubMed  Google Scholar 

  • Routhu SR, Nagarjuna Chary R, Shaik AB, Prabhakar S, Ganesh Kumar C, Kamal A (2019) Induction of apoptosis in lung carcinoma cells by antiproliferative cyclic lipopeptides from marine algicolous isolate Bacillus atrophaeus strain AKLSR1. Process Biochem 79:142–154

    Article  CAS  Google Scholar 

  • Rufino RD, Luna JM, Sarubbo LA, Rodrigues LRM, Teixeira JAC, Campos-Takaki GM (2011) Antimicrobial and anti-adhesive potential of a biosurfactant Rufisan produced by Candida lipolytica UCP 0988. Colloids Surf B: Biointerfaces 84:1–5

    Article  CAS  PubMed  Google Scholar 

  • Rufino RD, de Luna JM, de Campos Takaki GM, Sarubbo LA (2014) Characterisation and properties of the biosurfactant produced by Candida lipolytica UCP 0988. Electron J Biotechnol 17:34–38

    Article  Google Scholar 

  • Saimmai A, Riansa-Ngawong W, Maneerat S, Dikit P (2019) Application of biosurfactants in the medical field. Walailak J Sci Tech 17:154–166

    Article  Google Scholar 

  • Sakr EAE, Ahmed HAE, Abo Saif FAA (2021) Characterisation of low-cost glycolipoprotein biosurfactant produced by Lactobacillus plantarum 60 FHE isolated from cheese samples using food wastes through response surface methodology and its potential as antimicrobial, antiviral, and anticancer activities. Int J Biol Macromol 170:94–106

    Article  CAS  PubMed  Google Scholar 

  • Salihu A, Abdulkadir I, Almustapha MN (2009) An investigation for potential development on biosurfactants. Biotechnol Mol Biol Rev 4:111–117

    CAS  Google Scholar 

  • Sambanthamoorthy K, Feng X, Patel R, Patel S, Paranavitana C (2014) Antimicrobial and antibiofilm potential of biosurfactants isolated from lactobacilli against multi-drug-resistant pathogens. BMC Microbiol 14:197

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandeep L, Rajasree S (2017) Biosurfactant: pharmaceutical perspective. J Anal Pharm Res 4(3):11–12

    Article  Google Scholar 

  • Santos D, Rufino R, Luna J, Santos V, Sarubbo L (2016) Biosurfactants: multifunctional biomolecules of the 21st century. Int J Mol Sci 17:401

    Article  PubMed  PubMed Central  Google Scholar 

  • Santos EF, Teixeira MFS, Converti A, Porto ALF, Sarubbo LA (2019) Production of a new lipoprotein biosurfactant by Streptomyces sp. DPUA1566 isolated from lichens collected in the Brazilian Amazon using agroindustry wastes. Biocatal Agric Biotechnol 17:142–150

    Article  Google Scholar 

  • Saravanakumari P, Mani K (2010) Structural characterisation of a novel xylolipid biosurfactant from Lactococcus lactis and analysis of antibacterial activity against multi-drug resistant pathogens. Bioresour Technol 101:8851–8854

    Article  CAS  PubMed  Google Scholar 

  • Sen S, Borah SN, Bora A, Deka S (2017) Production, characterisation, and antifungal activity of a biosurfactant produced by Rhodotorula babjevae YS3. Microb Cell Factories 16:95

    Article  Google Scholar 

  • Sena HH, Sanches MA, Rocha DFS, Segundo WOPF, de Souza ÉS, de Souza JVB (2018) Production of biosurfactants by soil fungi isolated from the Amazon Forest. Int Microbiol 2018:1–8

    Article  Google Scholar 

  • Seydlov G, Abala R, Svobodov J (2011) Surfactin – novel solutions for global issues. In: Olsztynska S (ed) Biomedical engineering, trends, research and technologies. InTech Open, London, pp 1–685

    Google Scholar 

  • Shah V, Doncel GF, Seyoum T, Eaton KM, Zalenskaya I, Hagver R, Azim A, Gross R (2005) Sophorolipids, microbial glycolipids with anti-human immunodeficiency virus and sperm-immobilizing activities. Antimicrob Agents Chemother 49:4093–4100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahaliyan F, Safahieh A, Abyar H (2015) Evaluation of emulsification index in marine bacteria Pseudomonas sp. and Bacillus sp. Arab J Sci Eng 40:1849–1854

    Article  CAS  Google Scholar 

  • Sharma D, Saharan BS (2016) Functional characterisation of biomedical potential of biosurfactant produced by Lactobacillus helveticus. Biotechnol Rep 11:27–35

    Article  Google Scholar 

  • Shekhar S, Sundaramanickam A, Balasubramanian T (2015) Biosurfactant producing microbes and their potential applications: a review. Crit Rev Environ Sci Technol 45:1522–1554

    Article  CAS  Google Scholar 

  • Smith ML, Gandolfi S, Coshall PM, Rahman PKSM (2020) Biosurfactants: a Covid-19 perspective. Front Microbiol 11:1341

    Article  PubMed  PubMed Central  Google Scholar 

  • Song JA, Kim HJ, Hong SK, Lee DH, Lee SW, Song CS, Kim KT, Choi IS, Lee JB, Park SY (2016) Oral intake of Lactobacillus rhamnosus M21 enhances the survival rate of mice lethally infected with influenza virus. J Microbiol Immunol Infect 49:16–23

    Article  CAS  PubMed  Google Scholar 

  • Sotirova A, Spasova D, Vasileva-Tonkova E, Galabova D (2009) Effects of rhamnolipid-biosurfactant on cell surface of Pseudomonas aeruginosa. Microbiol Res 164:297–303

    Article  CAS  PubMed  Google Scholar 

  • Starosila D, Rybalko S, Varbanetz L, Ivanskaya N, Sorokulova I (2017) Anti-influenza activity of a Bacillus subtilisprobiotic strain. Antimicrob Agents Chemother 61:e00539–e00517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thakur P, Saini NK, Thakur VK, Gupta VK, Saini RV, Saini AK (2021) Rhamnolipid the glycolipid biosurfactant: emerging trends and promising strategies in the field of biotechnology and biomedicine. Microb Cell Factories 20:1

    Article  CAS  Google Scholar 

  • Thavasi R, Subramanyam Nambaru VRM, Jayalakshmi S, Balasubramanian T, Banat IM (2011) Biosurfactant production by Pseudomonas aeruginosa from renewable resources. Indian J Microbiol 51:30–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valle J, Da Re S, Henry N, Fontaine T, Balestrino D, Latour-Lambert P, Ghigo J-M (2006) Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide. Proc Natl Acad Sci U S A 103:12558–12563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Hoogmoed CG, van der Mei HC, Busscher HJ (2004) The influence of biosurfactants released by S. mitisbMS on the adhesion of pioneer strains and cariogenic bacteria. Biofouling 20:261–267

    Article  PubMed  Google Scholar 

  • Velraeds MMC, van de Belt-Gritter B, Busscher HJ, Reid G, van der Mei HC (2000) Inhibition of uropathogenic biofilm growth on silicone rubber in human urine by lactobacilli – a teleologic approach: world. J Urol 18:422–426

    CAS  Google Scholar 

  • Vijayakumar S, Saravanan V (2015) Biosurfactants-types, sources and applications. Res J Microbiol 10:181–192

    Article  Google Scholar 

  • Vollenbroich D, Özel M, Vater J, Kamp RM, Pauli G (1997) Mechanism of inactivation of enveloped viruses by the biosurfactant Surfactin from Bacillus subtilis. Biologicals 25:289–297

    Article  CAS  PubMed  Google Scholar 

  • Waghmode S, Swami S, Sarkar D, Suryavanshi M, Roachlani S, Choudhari P, Satpute S (2020) Exploring the pharmacological potentials of biosurfactant derived from Planococcus maritimus SAMP MCC 3013. Curr Microbiol 77:452–459

    Article  CAS  PubMed  Google Scholar 

  • Walencka E, Różalska S, Sadowska B, Różalska B (2008) The influence of Lactobacillus acidophilus-derived surfactants on staphylococcal adhesion and biofilm formation. Folia Microbiol 53:61–66

    Article  CAS  Google Scholar 

  • Wang CL, Ng TB, Yuan F, Liu ZK, Liu F (2007) Induction of apoptosis in human leukemia K562 cells by cyclic lipopeptide from Bacillus subtilis natto T-2. Peptides 28:1344–1350

    Article  PubMed  Google Scholar 

  • Wang L, Deng Y, Knight JL, Wu Y, Kim B, Sherman W, Shelley JC, Lin T, Abel R (2013) Modeling local structural rearrangements using FEP/REST: application to relative binding affinity predictions of CDK2 inhibitors. J Chem Theory Comput 9:1282–1293

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Hu W, Zhu L, Yang Q (2017) Bacillus subtilis and surfactin inhibit the transmissible gastroenteritis virus from entering the intestinal epithelial cells. Biosci Rep 37:BSR20170082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (2020) Herpes simplex virus. WHO, Switzerland, Geneva. https://www.who.int/news-room/fact-sheets/detail/herpes-simplex-virus

    Google Scholar 

  • **a B, Luo M, Pang L, Liu X, Yi Y (2021) Lipopeptides against COVID-19 RNA-dependent RNA polymerase using molecular docking. Biom J 44:S15–S24

    CAS  Google Scholar 

  • Yea D, Jo S, Lim J (2019) Synthesis of eco-friendly nano-structured biosurfactants from vegetable oil sources and characterization of their interfacial properties for cosmetic applications. MRS Adv 4:377–384

    Article  CAS  Google Scholar 

  • Yoshida N, Yagi K, Sato D, Watanabe N, Kuroishi T, Nishimoto K, Yanagida A, Katsuragi T, Kanagawa T, Kurane R, Tani Y (2005) Bacterial communities in petroleum oil in stockpiles. J Biosci Bioeng 99:143–149

    Article  CAS  PubMed  Google Scholar 

  • Yuan L, Zhang S, Wang Y, Li Y, Wang X, Yang Q (2018) Surfactin inhibits membrane fusion during invasion of epithelial cells by enveloped viruses. J Virol 92:e00809–e00818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan L, Zhang S, Peng J, Li Y, Yang Q (2019) Synthetic surfactin analogues have improved anti-PEDV properties. PLoS One 14:e0215227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng C, Li S, Yu L, Huang L, Wu Q (2009) Study of the biosurfactant-producing profile in a newly isolated Rhodococcus ruber strain. Ann Microbiol 59:771–776

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balakrishnan, S., Rameshkumar, M.R., Nivedha, A., Sundar, K., Arunagirinathan, N., Valan Arasu, M. (2023). Biosurfactants: An Antiviral Perspective. In: Kumar, P., Dubey, R.C. (eds) Multifunctional Microbial Biosurfactants. Springer, Cham. https://doi.org/10.1007/978-3-031-31230-4_20

Download citation

Publish with us

Policies and ethics

Navigation