Artificial Photosynthesis Using Nanotechnology

  • Chapter
  • First Online:
Modern Nanotechnology

Abstract

Photosynthesis is biochemical cascade of reactions in plants to produce glucose, the form of energy, using the raw materials water and carbon dioxide in presence of sunlight. Artificial photosynthesis is considered as a process that mimics natural photosynthesis. In this process, the solar energy is trapped into chemical fuels which are high energy compounds. This process utilises hydrogen released by splitting of water, in combination with carbon monoxide from carbon dioxide reduction. This method of converting solar light into high-energy fuel aids in the transition from a dependency on fossil and gaseous fuels to a carbon-neutral, or more specifically, a carbon-negative approach. Along with splitting water molecules producing oxygen, hydrogen released gets trapped. This makes artificial photosynthesis an ideal and possible way-out for the energy predicament, the world is facing.

Even though various methods are there to provide alternate energy, the attractive feature of artificial photosynthesis is that, it can produce methanol also as an alternate fuel along with hydrogen. Along with ability to produce liquid hydrogen fuel free of greenhouse gas emission; it also utilises carbon dioxide and water in presence of solar energy. These features protect our environment also. Cost aspect considered reveals that it is least expensive. Since this technology is amenable to modifications various strategies are on trial.

Nanoparticle techniques mimicking natural processes can be exploited in artificial photosynthesis. Because the major challenge here is lack of energy efficient catalytic systems. In addition to the existing cobalt oxide and titanium dioxide particles, recent advances in this area explore electron-rich gold nanoparticles as catalysts. Another approach to this mechanism is use of semiconducting microwires with flexible polymeric membranes. Hybrid nanoparticles, like Ag-decorated reduced titanium oxide, are another promising suggestion. Plasmonic metal nanoparticles enhance light absorption by these catalysts providing chemical reactive pathways, improving solar energy conversion. Another area that has to be looked upon to enhance artificial photosynthesis is standardisation of controlled size and form.

This chapter attempts to understand and analyse the artificial synthetic nanoparticle-biotic interface of artificial photosynthesis. The goal is to achieve high catalytic performance in hydrogen release along with oxygen evolution by creating a biomimetic system with nano techniques. The system is expected to provide cleaner environment with maximum energy production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alghoul M, Azmi BZ, Wahab MA (2005) Review of materials for solar thermal collectors. Anti-Corros Methods Mater 52:199–206

    Article  CAS  Google Scholar 

  • Allakhverdiev SI, Thavasi V, Kreslavski VD, Zharmukhamedov SK, Klimov VV, Ramakrishna S, Los DA, Mimuro M, Nishihara H, Carpentier R (2010) Photosynthetic hydrogen production. J Photochem Photobio C Rev 11(2–3):101–113

    Article  CAS  Google Scholar 

  • Alstrum-Acevedo JH, Brennaman MK, Thomas JM (2005) Chemical approaches to artificial photosynthesis. 2. Inorg Chem 44(20):6802–6827

    Article  CAS  Google Scholar 

  • Andong H, Shungui Z, Jie Y (2021) The mechanism, progress and prospect of biohybrid mediated semi-artificial photosynthesis. Prog Chem 33(11):2103–2115

    Google Scholar 

  • Andreiadis ES, Chavarot-Kerlidou M, Fontecave M, Artero V (2011) Artificial photosynthesis: from molecular catalysts for light-driven water splitting to photoelectrochemical cells. Photochem Photobiol 87(5):946–964

    Article  CAS  Google Scholar 

  • Armaroli N, Balzani V (2007) The future of energy supply: challenges and opportunities. Angew Chem Int Ed 46(1–2):52–66

    CAS  Google Scholar 

  • Ayers W (1983) Photolytic production of hydrogen. Patent US4466869A

    Google Scholar 

  • Barber J (2017) A mechanism for water splitting and oxygen production in photosynthesis. Nat Plants 3:17041

    Article  CAS  Google Scholar 

  • Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, Brown D, Alkilany AM, Farokhzad OC, Mahmoudi M (2017) Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev 46(14):4218–4244

    Article  CAS  Google Scholar 

  • Berardi S, Drouet S, Francàs L, Gimbert-Suriñach C, Guttentag M, Richmond C, Stoll T, Llobet A (2014) Molecular artificial photosynthesis. Chem Soc Rev 43:7501–7519

    Article  CAS  Google Scholar 

  • Brown KA, King PW (2020) Coupling biology to synthetic nanomaterials for semi-artificial photosynthesis. Photosynth Res 143(2):193–203

    Article  CAS  Google Scholar 

  • Casadevall C, Zhang H, Chen S, Sommer DJ, Seo DK, Ghirlanda G (2021) Photoelectrochemical water oxidation by cobalt cytochrome C integrated-ATO photoanode. Catalogue 11:626

    CAS  Google Scholar 

  • Cestellos-Blanco S, Zhang H, Kim JM, Shen YX, Yang P (2020) Photosynthetic semiconductor biohybrids for solar-driven biocatalysis. Nat Catal 3:245–255

    Article  CAS  Google Scholar 

  • Chaturvedi S, Dave PN, Shah NK (2012) Applications of nano-catalyst in new era. J Saudi Chem Soc 16(3):307–325

    Article  CAS  Google Scholar 

  • Chaudhary YS, Woolerton TW, Allen CS, Warner JH, Pierce E, Ragsdale SW, Armstrong FA (2012) Visible light-driven CO2 reduction by enzyme coupled CdS nanocrystals. Chem Commun 48:58–60

    Article  CAS  Google Scholar 

  • Chen Z, Zhang H, Guo P, Zhang J, Tira G, Kim YJ, Wu YA, Liu Y, Wen J, Rajh T, Niklas J, Poluektov OG, Liable PD, Rozhkova EA (2019) Semi-artificial photosynthetic CO2 reduction through purple membrane re-engineering with semiconductor. J Am Chem Soc 141(30):11811–11815

    Article  CAS  Google Scholar 

  • Chen Y, Li P, Zhou J, Buru CT, Đorđević L, Li P, Zhang X, Cetin MM, Stoddart JF, Stupp SI, Wasielewski MR, Farha OK (2020) Integration of enzymes and photosensitizers in a hierarchical mesoporous metal–organic framework for light-driven CO2 reduction. J Am Chem Soc 142(4):1768–1773

    Article  CAS  Google Scholar 

  • Cheung C, Al-Jamal WT (2018) Liposomes-based nanoparticles for cancer therapy and bioimaging. In: Gonçalves G, Tobias G (eds) Nanooncology – engineering nanomaterials for cancer therapy. Springer, Cham, pp 51–87

    Chapter  Google Scholar 

  • Chu S, Li W, Thomas H, Ishiang S, Dunwei W, Zetian M (2017) Roadmapon solar water splitting: current status and future prospects. Nano Futures 1(2):1–10

    Article  Google Scholar 

  • Concepcion JJ, House RL, Papanikolas JM, Meyer TJ (2012) Proc Natl Acad Sci USA 109(39):15560–15564

    Article  CAS  Google Scholar 

  • Cormode DP, Gao L, Koo H (2018) Emerging biomedical applications of enzyme-like catalytic nanomaterials. Trends Biotechnol 36(1):15–29

    Article  CAS  Google Scholar 

  • Cox N, Pantazis DA, Neese F, Lubitz W (2015) Artificial photosynthesis: understanding water splitting in nature. Interface Focus 5(3):1–10

    Article  Google Scholar 

  • Ding YC, Bertram JR, Eckert C, Bommareddy RR, Patel R, Conradie A, Bryan S, Nagpal P (2019) Nanorg microbial factories: light-driven renewable biochemical synthesis using quantum dot bacteria nanobiohybrids. J Am Chem Soc 141(26):10272–10282

    Article  CAS  Google Scholar 

  • Frischmann PD, Mahata K, Würthner F (2013) Powering the future of molecular artificial photosynthesis with light-harvesting metallo supramolecular dye assemblies. Chem Soc Rev 42:1847–1870

    Article  CAS  Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  • Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C: Photochem Rev 1(1):1–21

    Article  CAS  Google Scholar 

  • Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583

    Article  CAS  Google Scholar 

  • Gul S, Khan SB, Rehman IU, Khan MA, Khan MI (2019) A comprehensive review of magnetic nanomaterials modern day theranostics. Front Mater 6:1–15

    Article  Google Scholar 

  • Guo J, Suastegui M, Sakimoto KK, Moody VM, **ao G, Nocera DG, Joshi NS (2018) Light-driven fine chemical production in yeast biohybrids. Science 362(6416):813–816

    Article  CAS  Google Scholar 

  • Gust D, Moore TA, Moore AA (2009) Solar fuels via artificial photosynthesis. Acc Chem Res 42(12):1890–1898

    Article  CAS  Google Scholar 

  • Hammarström L, Styring S (2008) Coupled electron transfers in artificial photosynthesis. Philos Trans R Soc Lond Ser B Biol Sci 363(1494):1283–1291

    Article  Google Scholar 

  • Han Z, Qiu F, Eisenberg R, Holland PL, Krauss TD (2012) Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst. Science 338:1321–1324

    Article  CAS  Google Scholar 

  • Hansen HA, Varley JB, Peterson AA, Nørskov JK (2013) Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO. J Phys Chem Lett 4:388–392

    Article  CAS  Google Scholar 

  • Hensel J, Wang G, Li Y, Zhang JZ (2010) Synergistic effect of CdSe quantum dot sensitization and nitrogen do** of TiO2 nanostructures for photoelectrochemical solar hydrogen generation. Nano Lett 10(2):478–483

    Article  CAS  Google Scholar 

  • Huang Z, Teramura K, Asakura H, Hosokawa S, Tanaka T (2017) Efficient photocatalytic carbon monoxide production from ammonia and carbon dioxide by the aid of artificial photosynthesis. Chem Sci 8:5797–5801

    Article  CAS  Google Scholar 

  • Huang X, Wang J, Li T, Wang J, Xu M, Yu W, Abed AE, Zhang X (2018) Review on optofluidic microreactors for artificial photosynthesis. Beilstein J Nanotechnol 9:30–41

    Article  CAS  Google Scholar 

  • Huang Z, Wang L, Yang C, Chen J, Zhao G, Huang X (2022) A versatile optofluidic microreactor for artificial photosynthesis induced coenzyme regeneration and L-glutamate synthesis. Lab Chip 22:2878–2885

    Article  CAS  Google Scholar 

  • Hwang BJ, Chen HC, Mai FD, Tsai HY, Yang CP, Rick J, Liu YC (2015) Innovative strategy on hydrogen evolution reaction utilizing activated liquid water. Sci Rep 5(16263):1–10

    Google Scholar 

  • Izumi Y (2013) Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coord Chem Rev 257(1):171–186

    Article  CAS  Google Scholar 

  • Kalomiraki M, Thermos K, Chaniotakis NA (2015) Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications. Int J Nanomedicine 22(11):1–12

    Google Scholar 

  • Kareya MS, Mariam I, Arumugam A, Nesamma AA, Jutur PP (2020) CO2 sequestration by hybrid integrative photosynthesis (CO2-SHIP): a green initiative for multi-product biorefineries. Mater Sci Energy Technol 3:420–428

    CAS  Google Scholar 

  • Kärkäs MD, Verho O, Johnston EV, Åkermark B (2014) Artificial photosynthesis: molecular systems for catalytic water oxidation. Chem Rev 114(24):11863–12001

    Article  Google Scholar 

  • Katas H, Moden NZ, Lim CS, Celesistinus T, Chan JY, Ganasan P, Suleman S, Abdalla SSI (2018) Biosynthesis and potential applications of silver and gold nanoparticles and their chitosan-based nanocomposites in nanomedicine. J Nanotechnol 2018:1–14

    Article  Google Scholar 

  • Kathpalia R, Verma AK (2021) Bio-inspired nanoparticles for artificial photosynthesis. Mater Today Proc 45:3825–3832

    Article  CAS  Google Scholar 

  • Kim JH, Nam DH, Park CB (2014) Nanobiocatalytic assemblies for artificial photosynthesis. Curr Opin Biotechnol 28:1–9

    Article  Google Scholar 

  • Kornienko N, Zhang JZ, Sakimoto KK, Yang P, Reisner E (2018) Interfacing nature’s catalytic machinery with synthetic materials for semi-artificial photosynthesis. Nat Nanotechnol 13:890–899

    Article  CAS  Google Scholar 

  • Kuk SK, Singh RK, Nam DH, Singh R, Lee J-K, Park CB (2017) Photoelectrochemical reduction of carbon dioxide to methanol through a highly efficient enzyme cascade. Angew Chem Int Ed 56(14):3827–3832

    Article  CAS  Google Scholar 

  • Kumar P, Vahidzadeh E, Thakur UK, Kar P, Alam KM, Goswami A, Mahdi N, Cui K, Bernard GM, Michaelis VK, Shankar K (2019) C3N5: a low bandgap semiconductor containing an azo-linked carbon nitride framework for photocatalytic, photovoltaic and adsorbent applications. J Am Chem Soc 141(13):5415–5436

    Article  CAS  Google Scholar 

  • Kumar P, Mulmi S, Laishram D, Alam KM, Thakur UK, Thangadurai V, Shankar K (2021) Water-splitting photoelectrodes consisting of heterojunctions of carbon nitride with ap-type low bandgap double perovskite oxide. Nanotechnolgy 32(48):485407

    Article  CAS  Google Scholar 

  • Kumaravel V, Bartlett J, Pillai SC (2020) Photoelectrochemical conversion of carbon dioxide (CO2) into fuels and value-added products. ACS Energy Lett 5(2):486–519

    Article  CAS  Google Scholar 

  • Laishram D, Zeng S, Alam KM, Kalra AP, Cui K, Kumar P, Sharma RK, Shankar K (2022) Air- and water-stable halide perovskite nanocrystals protected with nearly-monolayer carbon nitride for CO2 photoreduction and water splitting. Appl Surf Sci 592:153276

    Article  CAS  Google Scholar 

  • Le TA, Huynh TP (2018) The combination of hydrogen and methanol production through artificial photosynthesis – are we ready yet? ChemSusChem 11(16):2654–2672

    Article  CAS  Google Scholar 

  • Lee JS, Lee S, Kim JH, Park CB (2011) Artificial photosynthesis on a chip: microfluidic cofactor regeneration and photo enzymatic synthesis under visible light. Lab Chip 14(11):2309–2311

    Article  Google Scholar 

  • Lewis NS (2016) Develo** a scalable artificial photosynthesis technology through nanomaterials by design. Nat Nanotechnol 11:1010–1019

    Article  CAS  Google Scholar 

  • Li Q, Guo B, Yu J, Ran J, Zhang B, Yan H, Gong JR (2011) Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J Am Chem Soc 133(28):10878–10884

    Article  CAS  Google Scholar 

  • Lin Y, Ren J, Qu X (2014) Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc Chem Res 47(4):1097–1105

    Article  CAS  Google Scholar 

  • Liu F, Concepcion JJ, Jurss JW, Cardolaccia T, Templeton JL, Meyer TJ (2008) Mechanisms of water oxidation from the blue dimer to photosystem II. Inorg Chem 47(6):1727–1752

    Article  CAS  Google Scholar 

  • Liu C, Dasgupta NP, Yang P (2014) Semiconductor nanowires for artificial photosynthesis. Chem Mater 26(1):415–422

    Article  CAS  Google Scholar 

  • Lutterman DA, Surendranath Y, Nocera DG (2009) A self-healing oxygen-evolving catalyst. J Am Chem Soc 131(11):3838–3839

    Article  CAS  Google Scholar 

  • Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, Domen K (2006) Photocatalyst releasing hydrogen from water. Nature 440(7082):295

    Article  CAS  Google Scholar 

  • Mal J, Nancharaiah YV, van Hullebusch ED, Lens PNL (2016) Metal chalcogenide quantum dots: biotechnological synthesis and applications. RSC Adv 6:41477–41495

    Article  CAS  Google Scholar 

  • Marzolf DR, McKenzie AM, O’Malley MC, Ponomarenko NS, Swaim CM, Brittain TJ, Simmons NL, Pokkuluri PR, Mulfort KL, Tiede DM, Kokhan O (2020) Mimicking natural photosynthesis: designing ultrafast photosensitized electron transfer into multiheme cytochrome protein nanowires. Nanomater 10(11):2143

    Article  CAS  Google Scholar 

  • McNeely K, Xu Y, Bennette N, Bryant DA, Dismukes GC (2010) Redirecting reductant flux into hydrogen production via metabolic engineering of fermentative carbon metabolism in a cyanobacterium. Appl Environ Microbiol 76(15):5032–5038

    Article  CAS  Google Scholar 

  • Nann T, Ibrahim SK, Woi P-M, Xu S, Ziegler J, Pickett CJ (2010) Water splitting by visible light: a nanophotocathode for hydrogen production. Angew Chem Int Ed 49(9):1574–1577

    Article  CAS  Google Scholar 

  • Olaya AJ, Riva JS, Baster D, Wanderson OS, Pichard F, Girault HH (2021) Visible-light-driven water oxidation on self-assembled metal-free organic@carbon junctions at neutral pH. JACS Au 1(12):2294–2302

    Article  CAS  Google Scholar 

  • Prabhakar U, Maeda H, Jain RK, Sevick-Muraca EM, Zamboni W, Farokhzad OC, Barry ST, Gabizon A, Grodzinski P, Blakey DC (2013) Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res 73(8):2412–2417

    Article  CAS  Google Scholar 

  • Prince MB (1990) The present status of photovoltaic technology. In: Sayigh AAM (ed) Energy and the environment. Pergamon, pp 112–119

    Chapter  Google Scholar 

  • Proppe AH, Li YGC, Aspuru-Guzik A, Berlinguette CP, Chang CJ, Cogdell R, Doyle AG, Flick J, Gabor NM, van Grondelle R (2020) Bioinspiration in light harvesting and catalysis. Nat Rev Mater 5:828–846

    Article  CAS  Google Scholar 

  • Quan Y, Song Y, Shi WJ, Xu Z, Chen JS, Jiang XM, Wang C, Lin W (2020) Metal-organic framework with dual active sites in engineered mesopores for bioinspired synergistic catalysis. J Am Chem Soc 142:8602–8607

    Article  CAS  Google Scholar 

  • Quintana N, Van der Kooy F, Van de Rhee MD, Voshol GP, Verpoorte R (2011) Renewable energy from cyanobacteria: energy production optimization by metabolic pathway engineering. Appl Microbiol Biotechnol 91(3):471–490

    Article  CAS  Google Scholar 

  • Rani A, Reddy R, Sharma U, Mukherjee P, Mishra P, Kuila A, Sim LC, Saravanan P (2018) A review on the progress of nanostructure materials for energy harnessing and environmental remediation. J Nanostruct Chem 8:255–291

    Article  CAS  Google Scholar 

  • Rayder TM, Adillon EH, Byers JA, Tsung C-K (2020) Bioinspired multicomponent catalytic system for converting carbon dioxide into methanol autocatalytically. Chem 6(7):1742–1754

    Article  CAS  Google Scholar 

  • Renger G (2012) Mechanism of light induced water splitting in photosystem II of oxygen evolving photosynthetic organisms. Biochim Biophys Acta Bioenerg 1817(8):1164–1176

    Article  CAS  Google Scholar 

  • Ruban AV, Johnson MP (2015) Visualizing the dynamic structure of the plant photosynthetic membrane. Nat Plants 1:15161

    Article  CAS  Google Scholar 

  • Sakimoto KK, Wong AB, Yang P (2016) Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 351(6268):74–77

    Article  CAS  Google Scholar 

  • Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2(3):1–6

    Google Scholar 

  • Sánchez-Baracaldo P, Cardona T (2020) On the origin of oxygenic photosynthesis and cyanobacteria. New Phytol 225(4):1440–1446

    Article  Google Scholar 

  • Seibert M, King PW, Posewitz MC, Melis A, Ghirardi ML (2008) Photosynthetic water-splitting for hydrogen production. In: Wall JD, Harwood CS, Demain A (eds) Bioenergy. Wiley online Library, pp 273–291

    Google Scholar 

  • Shezad N, Maafa IM, Johari K, Hafeez A, Akhter P, Shabir M, Raza A, Anjum H, Hussain M, Tahir M (2019) Carbon nanotubes incorporated Z-scheme assembly of AgBr/TiO2 for photocatalytic hydrogen production under visible light irradiations. Nanomaterials 9(12):1767

    Article  CAS  Google Scholar 

  • Sokol KP, Robinson WE, Oliveira AR, Warnan J, Nowaczyk MM, Ruff A, Pereira IAC, Reisner E (2018) Photoreduction of CO2 with a formate dehydrogenase driven by photosystem II using a semi-artificial Z-scheme architecture. J Am Chem Soc 140(48):16418–16422

    Article  CAS  Google Scholar 

  • Styring S (2012) Artificial photosynthesis for solar fuels. Faraday Discuss 155:357–376

    Article  CAS  Google Scholar 

  • Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473(7345):55–60

    Article  CAS  Google Scholar 

  • Üzek R, Sari E, Merkoçi A (2019) Optical-based (bio) sensing systems using magnetic nanoparticles. Magnetochemistry 5(4):59

    Article  Google Scholar 

  • Vahidzadeh E, Zeng S, Manuel AP, Riddell S, Kumar P, Alam KM, Shankar K (2021) Asymmetric multipole plasmon-mediated catalysis shifts the product selectivity of CO2 photoreduction toward C2+ products. ACS Appl Mater Interfaces 13(6):7248–7258

    Article  CAS  Google Scholar 

  • Verma ML, Dhanya BS, Sukriti RV, Thakur M, Jeslin J, Kushwaha R (2020) Carbohydrate and protein based biopolymeric nanoparticles: current status and biotechnological applications. Int J Biol Macromol 154:390–412

    Article  CAS  Google Scholar 

  • Wagner MK, Li F, Li J, Li XF, Le XC (2010) Use of quantum dots in the development of assays for cancer biomarkers. Anal Bioanal Chem 397(8):3213–3224

    Article  CAS  Google Scholar 

  • Wang G, Castiglione K (2018) Light-driven biocatalysts in liposomes and polymersomes: where are we now? Catalogue 9(1):1–25

    Google Scholar 

  • Wang B, Wang J, Zhang W, Meldrum DR (2012) Application of synthetic biology in cyanobacteria and algae. Front Microbiol 3:1–15

    Article  Google Scholar 

  • Wang H, Liu W, ** S, Zhang X, **e Y (2020) Low-dimensional semiconductors in artificial photosynthesis: an outlook for the interactions between particles/quasiparticles. ACS Central Sci 6(7):1058–1069

    Article  CAS  Google Scholar 

  • Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42:6060–6093

    Article  CAS  Google Scholar 

  • Wei W, Sun P, Li Z, Song K, Su W, Wang B, Liu Y, Zhao J (2018) A surface-display biohybrid approach to light-driven hydrogen production in air. Sci Adv 4(2):9253

    Article  Google Scholar 

  • Wendell D, Todd J, Montemagno C (2010) Artificial photosynthesis in ranaspumin-2 based foam. Nano Lett 10(9):3231–3236

    Article  CAS  Google Scholar 

  • Woolerton TW, Sheard S, Reisner E, Pierce E, Ragsdale SW, Armstrong FA (2010) Efficient and clean photoreduction of CO(2) to CO by enzyme-modified TiO(2) nanoparticles using visible light. J Am Chem Soc 132(7):2132–2133

    Article  CAS  Google Scholar 

  • **ao K, Liang J, Wang X, Hou T, Ren X, Yin P, Ma Z, Zeng C, Gao X, Yu T, Si T, Wang B, Zhong C, Jiang Z, Lee CS, Yu JC, Wong PK (2022) Panoramic insights into semi-artificial photosynthesis: origin, development, and future perspective. Energy Environ Sci 15(2):529–549

    Article  CAS  Google Scholar 

  • Xu Z, Liu Y, Ren F, Yang F, Ma D (2016) Development of functional nanostructures and their applications in catalysis and solar cells. Coord Chem Rev 320–321:153–180

    Article  Google Scholar 

  • Yu S, Fan XB, Wang A, Li J, Zhang Q, **a A, Wei S, Wu LZ, Zhou Y, Patzke GR (2018) Efficient photocatalytic hydrogen evolution with ligand engineered all-inorganic InP and InP/ZnS colloidal quantum dots. Nat Commun 9(1):4009

    Article  Google Scholar 

  • Zhang J, Zhuang J, Gao L, Zhang Y, Gu N, Feng J, Yang D, Zhu J, Yan X (2008a) Decomposing phenol by the hidden talent of ferromagnetic nanoparticles. Chemosphere 73(9):1524–1528

    Article  CAS  Google Scholar 

  • Zhang L, Zhai Y, Gao N, Wen D, Dong S (2008b) Sensing H2O2 with layer-by-layer assembled Fe3O4-PDDA nanocomposite film. Electrochem Commun 10:1524–1526

    Article  CAS  Google Scholar 

  • Zhang H, Liu H, Tian Z, Lu D, Yu Y, Cestellos-Blanco S, Sakimoto K, Yang P (2018a) Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production. Nat Nanotechnol 13(10):900–905

    Article  CAS  Google Scholar 

  • Zhang L, Can M, Ragsdale SW, Armstrong FA (2018b) Fast and selective photoreduction of CO2 to CO catalyzed by a complex of carbon monoxide dehydrogenase, TiO2, and Ag nanoclusters. ACS Catal 8(4):2789–2795

    Article  CAS  Google Scholar 

  • Zhang SH, Shi J, Sun Y, Wu Y, Zhang Y, Cai Z, Chen Y, You C, Han P, Jiang Z (2019) Artificial thylakoid is used for the coordinated photo enzymatic reduction of carbon dioxide. ACS Catal 9(5):3913–3925

    Article  CAS  Google Scholar 

  • Zhu XG, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19(2):153–159

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nair, P., Das, B., Kuriakose, T. (2023). Artificial Photosynthesis Using Nanotechnology. In: Malik, J.A., Sadiq Mohamed, M.J. (eds) Modern Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-031-31111-6_25

Download citation

Publish with us

Policies and ethics

Navigation