Removal of Radioactive Wastes Using Nanomaterial

  • Chapter
  • First Online:
Modern Nanotechnology

Abstract

Radioactivity is a silent killer; even though radiations are not visible, they are strong enough to alter a cell’s normal functioning. The extent of damage by the radiation depends on the kind of radiation and its capability of penetration. X-rays and Gamma rays have the maximum penetration, and they cause the generation of free radicals within the cells. The free radicals are responsible for causing damage to some of the essential cellular components like proteins, nucleic acid, cell membranes, etc. Even nuclear wastewater is a rich source of radioactive waste and requires special prior treatment before being released into normal water bodies. Hence radioactive wastes impart a serious threat to the environment and the health of living organisms. Nanotechnology is a branch of science showing promising solutions for various scientific challenges. There is a wide array of research in this sector wherein scientists are trying to exploit the properties of nanotechnology to address the issue of radioactive waste removal. Nanotechnology can be used in the form of magnetic nanoparticles conjugated with specific chelator molecules to sequester molecules, or they can be used in the form of carbon-based nanomaterial for the adsorption of radioactive atoms. Recently, a research showed that graphene quantum dots (GQDs) can be used as smart nano-adsorbents of uranium (238U). Incorporation of ferrihydrite nanoparticles into cementitious materials can help in the immobilization of radioactive uranium and prevent its leaching by almost 50–57%. Hence, the applications of nanomaterials as magnetic nanoparticles, nano-adsorbents, etc. can be a hopeful solution to combat radioactive waste-mediated hazards in near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 147.69
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Zahrani J (2000) Gamma radiation hazards and risks associated with industrial wastes materials. J Geosci Environ Protect 5:24–30

    Article  Google Scholar 

  • Amdur RJ, Dagan R (2019) The University of Florida Department of Radiation Oncology guidelines for treatment of differentiated thyroid cancer with I-131 or external-beam radiotherapy. Am J Clin Oncol 42(1):92–98

    Article  Google Scholar 

  • Amer H, Moustafa WM, Farghali AA, El Rouby WMA, Khalil WF (2017) Efficient removal of cobalt(II) and strontium(II) metals from water using ethylene diamine tetra-acetic acid functionalized graphene oxide. Z Anorg Allg Chem 643(22):1776–1784

    Article  CAS  Google Scholar 

  • Attallah MF, Rizk SE, El Afifi EM (2018) Efficient removal of iodine and chromium as anionic species from radioactive liquid waste using prepared iron oxide nanofibers. J Radioanal Nucl Chem 317(2):933–945

    Article  CAS  Google Scholar 

  • Bai X, Zhang X, Hua Z, Ma W, Dai Z, Huang X, Gu H (2014) Uniformly distributed anatase TiO2 nanoparticles on graphene: synthesis, characterization, and photocatalytic application. Complete 599:10–18

    CAS  Google Scholar 

  • Batchelor B (2006) Overview of waste stabilization with cement. Waste Manag 26(7):689–698

    Article  CAS  Google Scholar 

  • Bayoumi TA, Saleh HM, Eskander SB (2013) Solidification of hot real radioactive liquid scintillator waste using cement–clay composite. Monatsh Chem 144(12):1751–1758

    Article  CAS  Google Scholar 

  • Bersimbaev RI, Bulgakova O (2015) The health effects of radon and uranium on the population of Kazakhstan. Genes Environ 37(1):1–10

    Article  Google Scholar 

  • Borai EH, Breky MME, Sayed MS, Abo-Aly MM (2015) Synthesis, characterization and application of titanium oxide nanocomposites for removal of radioactive cesium, cobalt and europium ions. J Colloid Interface Sci 450:17–25

    Article  CAS  Google Scholar 

  • Cabrero M, Martin A, Briones J, Gayoso J, Jarque I, López J, Grande C, Heras I, Arranz R et al (2017) Phase II study of yttrium-90-ibritumomab tiuxetan as part of reduced-intensity conditioning (with melphalan, fludarabine ± thiotepa) for allogeneic transplantation in relapsed or refractory aggressive B cell lymphoma: a GELTAMO trial. Biol Blood Marrow Transpl 23(1):53–59

    Article  CAS  Google Scholar 

  • Campayo L, Grandjean A, Coulon A, Delorme R, Vantelon D, Laurencin D (2011) Incorporation of iodates into hydroxyapatites: a new approach for the confinement of radioactive iodine. J Mater Chem 21(44):17609–17611

    Article  CAS  Google Scholar 

  • Cao B, Fan S, Tan X, Li M, Hu Y (2017) Cementitious materials modified with hematite nanoparticles for enhanced cement hydration and uranium immobilization. Environ Sci Nano 4(8):1670–1681

    Article  CAS  Google Scholar 

  • Chen C, Li X, Zhao D, Tan X, Wang X (2007) Adsorption kinetic, thermodynamic and desorption studies of Th(IV) on oxidized multi-wall carbon nanotubes. Colloids Surf A Physicochem Eng Aspects 302(1–3):449–454

    Article  CAS  Google Scholar 

  • Chen YY, Yu SH, Yao QZ, Fu SQ, Zhou GT (2018) One-step synthesis of Ag2O@Mg(OH)2 nanocomposite as an efficient scavenger for iodine and uranium. J Colloid Interface Sci 510:280–291

    Article  CAS  Google Scholar 

  • Choi MH, Jeong SW, Shim HE, Yun SJ, Mushtaq S, Choi DS, Jang BS, Yang JE, Choi YJ et al (2017) Efficient bioremediation of radioactive iodine using biogenic gold nanomaterial-containing radiation-resistant bacterium, Deinococcus radiodurans R1. Chem Commun (Camb) 53(28):3937–3940

    Article  CAS  Google Scholar 

  • Choppin GR, Liljenzin JO, Rydberg J (2002) Unstable nuclei and radioactive decay. Radiochemistry and nuclear chemistry In: Radioactive sources: applications and alternative technologies. Butterworth-Heinemann, pp 58–59

    Google Scholar 

  • Ciarallo A, Rivera J (2020) Radioactive iodine therapy in differentiated thyroid cancer: 2020 update. AJR Am J Roentgenol 215(2):285–291

    Article  Google Scholar 

  • Coulon A, Laurencin D, Grandjean A, Cau Dit Coumes C, Rossignol S, Campayo L (2014) Immobilization of iodine into a hydroxyapatite structure prepared by cementation. J Mater Chem A 2(48):20923–20932

    Article  CAS  Google Scholar 

  • de Menezes FD, Alencar LMR, dos Santos CC, da Silva MIB, Santos-Oliveira R (2019) Using graphene quantum dots for treating radioactive liquid waste. Environ Sci Pollut Res 27(3):3508–3512

    Article  Google Scholar 

  • Deng X, Lü L, Li H, Luo F (2010) The adsorption properties of Pb(II) and Cd(II) on functionalized graphene prepared by electrolysis method. J Hazard Mater 183(1–3):923–930

    Article  CAS  Google Scholar 

  • Edmonds J (2016) Review of common human vulnerabilities and contributions to past accidents. In: Human factors in the chemical and process industries. Elsevier Inc, pp 25–38

    Google Scholar 

  • El Afifi EM, Shahr El-Din AM, Aglan RF, Borai EH, Abo-Aly MM (2017) Baseline evaluation for natural radioactivity level and radiological hazardous parameters associated with processing of high grade monazite. Regul Toxicol Pharmacol 89:215–223

    Article  Google Scholar 

  • EPA (2022) Radiation basics. United States Environmental Protection Agency. https://www.epa.gov/radiation/radiation-basics. Accessed 15 Oct 2022

  • Faghihian H, Iravani M, Moayed M, Ghannadi-Maragheh M (2013a) A novel polyacrylonitrile-zeolite nanocomposite to clean Cs and Sr from radioactive waste. Environ Chem Lett 11(3):277–282

    Article  CAS  Google Scholar 

  • Faghihian H, Moayed M, Firooz A, Iravani M (2013b) Synthesis of a novel magnetic zeolite nanocomposite for removal of Cs+ and Sr2+ from aqueous solution: kinetic, equilibrium, and thermodynamic studies. J Colloid Interface Sci 393(1):445–451

    Article  CAS  Google Scholar 

  • Fan FL, Qin Z, Bai J, Rong WD, Fan FY, Tian W, Wu XL, Wang Y, Zhao L (2012) Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles. J Environ Radioact 106:40–46

    Article  CAS  Google Scholar 

  • Fan S, Cao B, Deng N, Hu Y, Li M (2019) Effects of ferrihydrite nanoparticle incorporation in cementitious materials on radioactive waste immobilization. J Hazard Mater 379:120570

    Article  CAS  Google Scholar 

  • Fang F, Kong L, Huang J, Wu S, Zhang K, Wang X, Sun B, ** Z, Wang J et al (2014) Removal of cobalt ions from aqueous solution by an amination graphene oxide nanocomposite. J Hazard Mater 270:1–10

    Article  CAS  Google Scholar 

  • Fasih TW, Sakr TM, Ayoub RR, Amin M (2016) Preparation and evaluation of nano-crystalline titania as sorbent for 99Mo/99mTc generator. Sep Sci Technol 51(13):2115–2121

    Article  CAS  Google Scholar 

  • Fernandez-Jimenez A, MacPhee DE, Lachowski EE, Palomo A (2005) Immobilization of cesium in alkaline activated fly ash matrix. J Nucl Mater 346(2–3):185–193

    Article  CAS  Google Scholar 

  • Fu F, Dionysiou DD, Liu H (2014) The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater 267:194–205

    Article  CAS  Google Scholar 

  • Glasser, FP (1992) Progress in the immobilization of radioactive wastes in cement, Cement and Concrete Research, 22 (2–3), 201–216. https://doi.org/10.1016/0008-8846(92)90058-4

  • Gougar MLD, Scheetz BE, Roy DM (1996) Ettringite and C-S-H Portland cement phases for waste ion immobilization: a review. Waste Manag 16(4):295–303

    Article  CAS  Google Scholar 

  • Guerrero A, Goñi S (2002) Efficiency of a blast furnace slag cement for immobilizing simulated borate radioactive liquid waste. Waste Manag 22(7):831–836

    Article  CAS  Google Scholar 

  • Han S, Um W, Kim WS (2019) Development of bismuth-functionalized graphene oxide to remove radioactive iodine. Dalton Trans 48(2):478–485

    Article  CAS  Google Scholar 

  • Harijan DKL, Chandra V, Yoon T, Kim KS (2018) Radioactive iodine capture and storage from water using magnetite nanoparticles encapsulated in polypyrrole. J Hazard Mater 344:576–584

    Article  CAS  Google Scholar 

  • Hu H, Sun L, Gao Y, Wang T, Huang Y, Lv C, Zhang YF, Huang Q, Chen X et al (2020) Synthesis of ZnO nanoparticle-anchored biochar composites for the selective removal of perrhenate, a surrogate for pertechnetate, from radioactive effluents. J Hazard Mater 387:121670

    Article  CAS  Google Scholar 

  • IAEA (1992) Treatment and conditioning of radioactive organic liquids, IAEA-TEC-DOC-656. International Atomic Energy Agency, Vienna

    Google Scholar 

  • IAEA (1994) Classification of radioactive waste, Safety series no. 111- G-1.1. International Atomic Energy Agency, Vienna

    Google Scholar 

  • IAEA (2001a) Decontamination and decommissioning of nuclear facilities, Technical reports series 401. International Atomic Energy Agency, Vienna

    Google Scholar 

  • IAEA (2001b) Handling and processing of radioactive waste from applications, Technical reports series 401. International Atomic Energy Agency, Vienna

    Google Scholar 

  • IAEA (2001c) Methods for the minimization of radioactive waste from decontamination and decommissioning of nuclear facilities. Rep S. International Atomic Energy Agency, Vienna

    Google Scholar 

  • IAEA (2002) Application of ion exchange process for the treatment of radioactive waste and management of spent ion exchanger, Technical reports series 408. International Atomic Energy Agency, Vienna

    Google Scholar 

  • IAEA (2004) Application of the concepts of exclusions, exemption and clearance, IAEA safety standards series no. RS-G-1.7. International Atomic Energy Agency, Vienna

    Google Scholar 

  • IAEA (2006a) Fundamental safety principles, IAEA safety standards series. SF-1. IAEA, Vienna

    Google Scholar 

  • IAEA (2006b) Application of thermal technologies for processing of radioactive waste, IAEA-TECDOC-1527. International Atomic Energy Agency, Vienna

    Google Scholar 

  • Inyang MI, Gao B, Yao Y, Xue Y, Zimmerman A, Mosa A, Pullammanappallil P, Ok YS, Cao X (2016) A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit Rev Environ Sci Technol 46(4):406–433

    Article  CAS  Google Scholar 

  • Kang JK, Seo S, ** YW (2019) Health effects of radon exposure. Yonsei Med J 60(7):597–603

    Article  CAS  Google Scholar 

  • Kautsky U, Lindborg T, Valentin J (2013) Humans and ecosystems over the coming millennia: overview of a biosphere assessment of radioactive waste disposal in Sweden. AMBIO 42: 383–392. https://doi.org/10.1007/s13280-013-0405-7

  • Kaur M, Zhang H, Martin L, Todd T, Qiang Y (2013) Conjugates of magnetic nanoparticle – actinide specific chelator for radioactive waste separation. Environ Sci Technol 47(21):11942–11959

    Article  CAS  Google Scholar 

  • Khelurkar N, Shah S, Jeswani H (2015) A review of radioactive waste management. In: Proceedings of the – International conference on technologies for sustainable development: ICTSD

    Google Scholar 

  • Kindness A, Macias A, Glasser FP (1994) Immobilization of chromium in cement matrices. Waste Manag 14(1):3–11

    Article  CAS  Google Scholar 

  • Komarneni S, Roy DM (1981) Mechanisms of immobilization of nuclear waste elements by cement minerals, cement and mortar. Cem Concr Res 11(5–6):789–794

    Article  CAS  Google Scholar 

  • Lee KY, Kim KW, Park M, Kim J, Oh M, Lee EH, Chung DY, Moon JK (2016) Novel application of nanozeolite for radioactive cesium removal from high-salt wastewater. Water Res 95:134–141

    Article  CAS  Google Scholar 

  • Leng Y, Guo W, Su S, Yi C, **ng L (2012) Removal of antimony(III) from aqueous solution by graphene as an adsorbent. Chem Eng J 211–212:406–411

    Article  Google Scholar 

  • Li Y, Zhang P, Du Q, Peng X, Liu T, Wang Z, **a Y, Zhang W, Wang K et al (2011) Adsorption of fluoride from aqueous solution by graphene. J Colloid Interface Sci 363(1):348–354

    Article  CAS  Google Scholar 

  • Li S, Wang L, Peng J, Zhai M, Shi W (2019) Efficient thorium(IV) removal by two-dimensional Ti2CTx MXene from aqueous solution. Chem Eng J 366:192–199

    Article  CAS  Google Scholar 

  • Liu WJ, Jiang H, Yu HQ (2015) Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem Rev 115(22):12251–12285

    Article  CAS  Google Scholar 

  • Liu C, Chen L, Ye Z, Li C, Yin X, Wang X, Wei Y (2019a) Pellet silica-based titanate adsorbents with high selectivity for strontium removal from synthetic radioactive solutions. J Sol-Gel Sci Technol 91(2):273–285

    Article  CAS  Google Scholar 

  • Liu Y, Zhao Z, Yuan D, Wang Y, Dai Y, Zhu Y, Chew JW (2019b) Introduction of amino groups into polyphosphazene framework supported on CNT and coated Fe3 O4 nanoparticles for enhanced selective U(VI) adsorption. Appl Surf Sci 466:893–902

    Article  CAS  Google Scholar 

  • Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Eng 46(8):1222–1244

    Article  CAS  Google Scholar 

  • Lu Y, Liu H, Gao R, **ao S, Zhang M, Yin Y, Wang S, Li J, Yang D (2016) Coherent-interface-assembled Ag2O-anchored nanofibrillated cellulose porous aerogels for radioactive iodine capture. ACS Appl Mater Interfaces 8(42):29179–29185

    Article  CAS  Google Scholar 

  • Mahmoud ME, Saad EA, El-Khatib AM, Soliman MA, Allam EA (2018a) Adsorptive removal of radioactive isotopes of cobalt and zinc from water and radioactive wastewater using TiO2/Ag2O nanoadsorbents. Prog Nucl Energy 106:51–63

    Article  CAS  Google Scholar 

  • Mahmoud ME, Saad EA, El-Khatib AM, Soliman MA, Allam EA, Fekry NA (2018b) Green solid synthesis of polyaniline-silver oxide nanocomposite for the adsorptive removal of ionic divalent species of Zn/Co and their radioactive isotopes 65Zn/60Co. Environ Sci Pollut Res Int 25(22):22120–22135

    Article  CAS  Google Scholar 

  • Mahmoud ME, Allam EA, Saad EA, El-Khatib AM, Soliman MA (2019) Intercalation of nanopolyaniline with nanobentonite and manganese oxide nanoparticles as a novel nanocomposite to remediate cobalt/zinc and their radioactive nuclides 60Co/65Zn. J Polym Environ 27(2):421–433

    Article  CAS  Google Scholar 

  • Manos MJ, Kanatzidis MG (2009) Sequestration of heavy metals from water with layered metal sulfides. Chemistry 15(19):4779–4784

    Article  CAS  Google Scholar 

  • Manos MJ, Kanatzidis MG (2012) Layered metal sulfides capture uranium from seawater. J Am Chem Soc 134(39):16441–16446

    Article  CAS  Google Scholar 

  • Mari M, Carrozza D, Ferrari E, Asti M (2021) Applications of radiolabelled curcumin and its derivatives in medicinal chemistry. Int J Mol Sci 22(14):7410

    Article  CAS  Google Scholar 

  • Mertz JL, Fard ZH, Malliakas CD, Manos MJ, Kanatzidis MG (2013) Selective removal of Cs+, Sr2+, and Ni2+ by K2xMgxSn3-xS6 (x = 0.5-1) (KMS-2) relevant to nuclear waste remediation. Chem Mater 25(10):2116–2127

    Article  CAS  Google Scholar 

  • Metwally SS, Ahmed IM, Rizk HE (2017) Modification of hydroxyapatite for removal of cesium and strontium ions from aqueous solution. J Alloys Compd 709:438–444

    Article  CAS  Google Scholar 

  • Michel FM, Ehm L, Antao SM, Lee PL, Chupas PJ, Liu G, Strongin DR, Schoonen MAA, Phillips BL et al (2007) The structure of ferrihydrite, a nanocrystalline material. Science 316(5832):1726–1729

    Article  CAS  Google Scholar 

  • Moore RC, Sanchez C, Holt K, Zhang P, Xu H, Choppin GR (2004) Formation of hydroxyapatite in soils using calcium citrate and sodium phosphate for control of strontium migration. Radiochim Acta 92(9–11):719–723

    Article  CAS  Google Scholar 

  • Moroni LP, Glasser FP (1995) Reactions between cement components and U(VI) oxide. Waste Manag 15(3):243–254

    Article  CAS  Google Scholar 

  • Muthukumar K, Lakshmi DS, Gujar RB, Boricha AB, Mohapatra PK, Bajaj HC (2016) Synthesis and characterization of magnetic copper-iron-titanate and uptake studies of americium from nuclear waste solutions. RSC Adv 6(113):111822–111830

    Article  CAS  Google Scholar 

  • Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW (2011) Two-dimensional nanocrystals produced by exfoliation of Ti 3AlC 2. Adv Mater 23(37):4248–4253

    Article  CAS  Google Scholar 

  • Natarajan V, Karunanidhi M, Raja B (2020) A critical review on radioactive waste management through biological techniques. Environ Sci Pollut Res Int 27(24):29812–29823

    Article  CAS  Google Scholar 

  • Navalkissoor S, Grossman A (2019) Targeted alpha particle therapy for neuroendocrine tumours: the next generation of peptide receptor radionuclide therapy. Neuroendocrinology 108(3):256–264

    Article  CAS  Google Scholar 

  • Nuñez L, Buchholz BA, Vandegrift GF (1995a) Waste remediation using in situ magnetically assisted chemical separation. Sep Sci Technol 30(7–9):1455–1471

    Article  Google Scholar 

  • Nuñez L, Kaminski M, Bradley C, Buchholz BA, Aase SB, Tuazon HE, Vandegrift GF, Landsberger S (1995b) Magnetically assisted chemical separation (MACS) process: preparation and optimization of particles for removal of transuranic elements (No. ANL – 95/1). Argonne National Lab

    Google Scholar 

  • Ojovan MI, Lee WE, Kalmykov SN (2019) Immobilisation of radioactive waste in cement. An Introduction. Nucl Waste Immobil:271–303

    Google Scholar 

  • Omidi MH, Azad FN, Ghaedi M, Asfaram A, Azqhandi MHA, Tayebi L (2017) Synthesis and characterization of Au-NPs supported on carbon nanotubes: Application for the ultrasound assisted removal of radioactive UO22+ ions following complexation with arsenazo III: spectrophotometric detection, optimization, isotherm and kinetic study. J Colloid Interface Sci 504:68–77

    Article  CAS  Google Scholar 

  • Osmanlioglu AE (2006) Treatment of radioactive liquid waste by sorption on natural zeolite in Turkey. J Hazard Mater 137(1):332–335

    Article  CAS  Google Scholar 

  • Pabalan R, Glasser F, Pickett D, Walter G, Biswas S, Juckett M, Sabido L, Myers J (2009) Contract NRC NRC-02-07-006 CNWRA 1

    Google Scholar 

  • Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36(13):R167–R181

    Article  CAS  Google Scholar 

  • Paria S, Yuet PK (2006) Solidification-stabilization of organic and inorganic contaminants using Portland cement: a literature review. Environ Rev 14(4):217–255

    Article  CAS  Google Scholar 

  • Peters TB, Barnes MJ, Hobbs DT, Walker DD, Fondeur FF, Norato MA, Fink SD, Pulmano RL (2006) Strontium and actinide separations from high level nuclear waste solutions using monosodium titanate 2. Actual waste testing. Sep Sci Technol 41(11):2409–2427

    Article  CAS  Google Scholar 

  • Peterson RA, Buck EC, Chun J, Daniel RC, Herting DL, Ilton ES, Lumetta GJ, Clark SB (2018) Review of the scientific understanding of radioactive waste at the U.S. DOE Hanford site. Environ Sci Technol 52(2):381–396

    Article  CAS  Google Scholar 

  • Pospěchová J, Brynych V, Štengl V, Tolasz J, Langecker JH, Bubeníková M, Szatmáry L (2016) Polysaccharide biopolymers modified with titanium or nickel nanoparticles for removal of radionuclides from aqueous solutions. J Radioanal Nucl Chem 307(2):1303–1314

    Article  Google Scholar 

  • Ren JS, Mu T, Zhang W, Yang SY (2008) Effect of Ingredients in waste water on property of ion exchange resin for uranium-contained waste water treatment. At Ene Sci Technol 42:38–42

    CAS  Google Scholar 

  • Rethinasabapathy M, Kang SM, Lee I, Lee GW, Hwang SK, Roh C, Huh YS (2018) Layer-structured POSS-modified Fe-Aminoclay/Carboxymethyl cellulose composite as a superior adsorbent for the removal of radioactive cesium and cationic dyes. Ind Eng Chem Res 57(41):13731–13741

    Article  CAS  Google Scholar 

  • Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2(1):3

    Article  Google Scholar 

  • Sasaki MS, Endo S, Hoshi M, Nomura T (2016) Neutron relative biological effectiveness in Hiroshima and Nagasaki atomic bomb survivors: a critical review. J Radiat Res 57(6):583–595

    Article  CAS  Google Scholar 

  • Shahbazi-Gahrouei D, Gholami M, Setayandeh S (2013) A review on natural background radiation. Adv Biomed Res 2(1):65

    Article  Google Scholar 

  • Sheha RR, Moussa SI, Attia MA, Sadeek SA, Someda HH (2016) Novel substituted hydroxyapatite nanoparticles as a solid phase for removal of Co(II) and Eu(III) ions from aqueous solutions. J Environ Chem Eng 4(4):4808–4816

    Article  CAS  Google Scholar 

  • Sheng G, Tang Y, Linghu W, Wang L, Li J, Li H, Wang X, Huang Y (2016) Enhanced immobilization of ReO4- by nanoscale zerovalent iron supported on layered double hydroxide via an advanced XAFS approach: implications for TcO4- sequestration. Appl Cat B 192:268–276

    Article  CAS  Google Scholar 

  • Shim HE, Yang JE, Jeong SW, Lee CH, Song L, Mushtaq S, Choi DS, Choi YJ, Jeon J (2018) Silver nanomaterial-immobilized desalination systems for efficient removal of radioactive iodine species in water. Nanomaterials 8(9):660

    Article  Google Scholar 

  • Shin E, Lee S, Kang H, Kim J, Kim K, Youn HS, ** YW, Seo S, Youn BH (2020) Organ-specific effects of low dose radiation exposure: a comprehensive review. Front Genet 11:566244

    Article  CAS  Google Scholar 

  • Sizmur T, Fresno T, Akgül G, Frost H, Moreno-Jiménez E (2017) Biochar modification to enhance sorption of inorganics from water. Bioresour Technol 246:34–47

    Article  CAS  Google Scholar 

  • Song W, Wang X, Wang Q, Shao D, Wang X (2015) Plasma-induced grafting of polyacrylamide on graphene oxide nanosheets for simultaneous removal of radionuclides. Phys Chem Chem Phys 17(1):398–406

    Article  CAS  Google Scholar 

  • Song S, Wang K, Zhang Y, Wang Y, Zhang C, Wang X, Zhang R, Chen J, Wen T et al (2019) Self-assembly of graphene oxide/PEDOT:PSS nanocomposite as a novel adsorbent for uranium immobilization from wastewater. Environ Pollut 250:196–205

    Article  CAS  Google Scholar 

  • Spatola GJ, Ostrander EA, Mousseau TA (2021) The effects of ionizing radiation on domestic dogs: a review of the atomic bomb testing era. Biol Rev Camb Philos Soc 96(5):1799–1815

    Article  Google Scholar 

  • Sun Y, Wang Q, Chen C, Tan X, Wang X (2012) Interaction between Eu(III) and graphene oxide nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques. Environ Sci Technol 46(11):6020–6027

    Article  CAS  Google Scholar 

  • Sun Y, Yang S, Chen Y, Ding C, Cheng W, Wang X (2015) Adsorption and desorption of U(VI) on functionalized graphene oxides: a combined experimental and theoretical study. Environ Sci Technol 49(7):4255–4262

    Article  CAS  Google Scholar 

  • Tan L, Liu Q, Song D, **g X, Liu J, Li R, Hu S, Liu L, Wang J (2015) Uranium extraction using a magnetic CoFe2O4 – graphene nanocomposite: kinetics and thermodynamics studies. New J Chem 39(4):2832–2838

    Article  CAS  Google Scholar 

  • Tan XF, Fei L, Gu YL, Xu Y, Zeng GM, Hu XJ, Liu SB, Wang X, Liu SM, Ming G, Hu L, Bo S (2016) Biochar-based nano-composites for the decontamination of wastewater: a review, [Liu, S. Mian, & Li]. Bioresour Technol 212:318–333

    Article  CAS  Google Scholar 

  • Tan X, Fang M, Tan L, Liu H, Ye X, Hayat T, Wang X (2018) Core-shell hierarchical C@Na2Ti3O7·9H2O nanostructures for the efficient removal of radionuclides. Environ Sci Nano 5(5):1140–1149

    Article  CAS  Google Scholar 

  • Valdovinos V, Monroy-Guzman F and Bustos E (2014) Treatment Methods for Radioactive Wastes and Its Electrochemical Applications. Environmental Risk Assessment of Soil Contamination. InTech. https://doi.org/10.5772/57445.

  • Voegeli M, Rondeau S, Berardi Vilei S, Lerch E, Wannesson L, Pabst T, Rentschler J, Bargetzi M, Jost L et al (2017) Y90-Ibritumomab tiuxetan (Y90-IT) and high-dose melphalan as conditioning regimen before autologous stem cell transplantation for elderly patients with lymphoma in relapse or resistant to chemotherapy: a feasibility trial (SAKK 37/05). Hematol Oncol 35(4):576–583

    Article  CAS  Google Scholar 

  • Waite TD, Davis JA, Payne TE, Waychunas GA, Xu N (1994) Uranium(VI) adsorption to ferrihydrite: application of a surface complexation model. Uranium Geochim Cosmochim Acta 58(24):5465–5478

    Article  CAS  Google Scholar 

  • Wang L, Yuan L, Chen K, Zhang Y, Deng Q, Du S, Huang Q, Zheng L, Zhang J et al (2016) Loading actinides in multilayered structures for nuclear waste treatment: the first case study of uranium capture with vanadium carbide MXene. ACS Appl Mater Interfaces 8(25):16396–16403

    Article  CAS  Google Scholar 

  • Wang X, Chen L, Wang L, Fan Q, Pan D, Li J, Chi F, **e Y, Yu S et al (2019) Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Sci China Chem 62(8):933–967

    Article  CAS  Google Scholar 

  • Waychunas GA, Rea BA, Fuller CC, Davis JA (1993) Surface chemistry of ferrihydrite: part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochim Cosmochim Acta 57(10):2251–2269

    Article  CAS  Google Scholar 

  • Wu P, Wang Y, Hu X, Yuan D, Liu Y, Liu Z (2019) Synthesis of magnetic graphene oxide nanoribbons composite for the removal of Th(IV) from aqueous solutions. J Radioanal Nucl Chem 319(3):1111–1118

    Article  CAS  Google Scholar 

  • **nquan T, **aobo Y, Songsheng L et al (2015) Efficient removal of radionuclide U(VI) from aqueous solutions by using graphene oxide nanosheets. J Radioanal Nucl Chem 303:245–253. https://doi.org/10.1007/s10967-014-3429-y

  • Yang D, Liu H, Zheng Z, Sarina S, Zhu H (2013) Titanate-based adsorbents for radioactive ions entrapment from water. Nanoscale 5(6):2232–2242

    Article  CAS  Google Scholar 

  • Yang P, Liu Q, Liu J, Zhang H, Li Z, Li R, Liu L, Wang J (2017) Interfacial growth of a metal-organic framework (UiO-66) on functionalized graphene oxide (GO) as a suitable seawater adsorbent for extraction of uranium(VI). J Mater Chem A 5(34):17933–17942

    Article  CAS  Google Scholar 

  • Zenda S, Nakagami Y, Toshima M, Arahira S, Kawashima M, Matsumoto Y, Kinoshita H, Satake M, Akimoto T (2014) Strontium-89 (Sr-89) chloride in the treatment of various cancer patients with multiple bone metastases. Int J Clin Oncol 19(4):739–743

    Article  CAS  Google Scholar 

  • Zhang X, Liu Y (2020) Nanomaterials for radioactive wastewater decontamination. Environ Sci Nano 7(4):1008–1040

    Article  CAS  Google Scholar 

  • Zhang YJ, Lan JH, Wang L, Wu QY, Wang CZ, Bo T, Chai ZF, Shi WQ (2016a) Adsorption of uranyl species on hydroxylated titanium carbide nanosheet: a first-principles study. J Hazard Mater 308:402–410

    Article  CAS  Google Scholar 

  • Zhang X, Gu P, Zhang G (2016b) Application of adsorptive nanomaterials in radioactive water treatment 35:2162–2171

    Google Scholar 

  • Zhang H, Dai Z, Sui Y, Xue J, Ding D (2018) Adsorption of U(VI) from aqueous solution by magnetic core–dual shell Fe3O4@PDA@TiO2. J Radioanal Nucl Chem 317(1):613–624

    Article  CAS  Google Scholar 

  • Zhang X, Gu P, Liu Y (2019) Decontamination of radioactive wastewater: state of the art and challenges forward. Chemosphere 215(October):543–553

    Article  CAS  Google Scholar 

  • Zhao Y, Zhao D, Chen C, Wang X (2013) Enhanced photo-reduction and removal of Cr(VI) on reduced graphene oxide decorated with TiO2 nanoparticles. J Colloid Interface Sci 405:211–217

    Article  CAS  Google Scholar 

  • Zhao B, O’Connor D, Zhang J, Peng T, Shen Z, Tsang DCW, Hou D (2018) Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. J Clean Prod 174:977–987

    Article  CAS  Google Scholar 

  • Zheng XM, Dou JF, **a M, Ding AZ (2017a) Ammonium-pillared montmorillonite-CoFe2O4 composite caged in calcium alginate beads for the removal of Cs+ from wastewater. Carbohydr Polym 167:306–316

    Article  CAS  Google Scholar 

  • Zheng Y, Qiao J, Yuan J, Shen J, Wang AJ, Niu L (2017b) Electrochemical removal of radioactive cesium from nuclear waste using the dendritic copper hexacyanoferrate/carbon nanotube hybrids. Electrochim Acta 257:172–180

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, B., Nair, P., Kuriakose, T. (2023). Removal of Radioactive Wastes Using Nanomaterial. In: Malik, J.A., Sadiq Mohamed, M.J. (eds) Modern Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-031-31111-6_18

Download citation

Publish with us

Policies and ethics

Navigation