Nitric Oxide and Cellular Redox Homeostasis in Plants

  • Chapter
  • First Online:
Gasotransmitters Signaling in Plant Abiotic Stress

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

  • 134 Accesses

Abstract

Attributing to the diverse abiotic stresses and climate fluctuations, the agriculture sector is experiencing some serious misfortunes. This largely influenced the growth, yield, and functioning of crops and have further imposed constraints on food security worldwide. Plants confront various abiotic stresses that leads to the generation of reactive oxygen species (ROS) in different cell compartments and disturb the redox homeostasis of the cells. The ROS when produced at high levels, they are considered harmful to cells and cause cellular damage whereas, at significant levels, they act as signaling molecules to provide defense responses to plants. Under stress, the accumulation of ROS within the cell tends to create an imbalance between the generation of ROS and the production of antioxidant enzymes which sets off a disproportion in the amount of ROS that builds up oxidative stress and ultimately leads to damaging effects on the cell. To combat such conditions, nitric oxide (NO) being a small, bioactive, gaseous signaling molecule employed by plants to mitigate the effects of abiotic stresses. NO is a redox molecule that assist in the scavenging of excessive ROS by promoting the activities of antioxidant enzymes and osmolytes, interacting with sulfur-assimilation pathway, upregulating the ascorbate–glutathione cycle, and utilizing nitrogen metabolism for its synthesis and therefore regulates the growth, development, and functioning of plants. In this chapter, we have documented the recent advancements indicating the harmful nature of ROS that cause oxidative damage and how it alters the cellular homeostasis within plants along with highlighting the crucial strategies utilized by NO to manage the ROS levels to establish a toxic-free environment and aid in the improvement of plant defense responses.

Tanashvi Seth and Sejal Asija are contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdulmajeed AM, Alnusairi GS, Alharbi MH, Almushhin A, Hasan MM, Soliman MH (2021) Alleviation of copper phytotoxicity by acetylsalicylic acid and nitric oxide application in mung bean involves the up-regulation of antioxidants, osmolytes and glyoxalase system. J Plant Interact 16(1):201–212

    Article  CAS  Google Scholar 

  • Ahanger MA, Aziz U, Alsahli AA, Alyemeni MN, Ahmad P (2019) Influence of exogenous salicylic acid and nitric oxide on growth, photosynthesis, and ascorbate-glutathione cycle in salt stressed Vigna angularis. Biomolecules 10(1):42

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmad P, Abdel Latef AA, Hashem A, Abd_Allah EF, Gucel S, Tran LSP (2016) Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front Plant Sci 7:347

    Google Scholar 

  • Alamri S, Siddiqui MH, Mukherjee S, Kumar R, Kalaji HM, Irfan M, Minkina T, Rajput, VD (2022) Molybdenum-induced endogenous nitric oxide (NO) signaling coordinately enhances resilience through chlorophyll metabolism, osmolyte accumulation and antioxidant system in arsenate stressed-wheat (Triticum aestivum L.) seedlings. Environ Pollut 292:118268

    Google Scholar 

  • Alber NA, Sivanesan H, Vanlerberghe GC (2017) The occurrence and control of nitric oxide generation by the plant mitochondrial electron transport chain. Plant Cell Environ 40(7):1074–1085

    Google Scholar 

  • Al-Elwany OA, Mohamed GF, Abdurrahman HA, Abdel Latef AA (2020) Exogenous glutathione-mediated tolerance to deficit irrigation in salt-affected Capsicum frutescence (L.) plants is connected with higher antioxidant content and ionic homeostasis. Not Bot Horti Agrobo Cluj-Napoca 48(4), 1957–1979

    Google Scholar 

  • Allagulova CR, Avalbaev AM, Lubyanova AR, Lastochkina OV, Shakirova FM (2022) Current Concepts of the Mechanisms of Nitric Oxide Formation in Plants. Russ J Plant Physiol 69(4):61

    Google Scholar 

  • Alp K, Terzi H, Yildiz M (2022) Proteomic and physiological analyses to elucidate nitric oxide-mediated adaptive responses of barley under cadmium stress. Phys Mol Biol Plants, 1–10

    Google Scholar 

  • Asgher M, Per TS, Masood A, Fatma M, Freschi L, Corpas FJ, Khan NA (2017) Nitric oxide signaling and its crosstalk with other plant growth regulators in plant responses to abiotic stress. Environ Sci Poll Res 24(3):2273–2285

    Article  CAS  Google Scholar 

  • Astier J, Gross I, Durner J (2018) Nitric oxide production in plants: an update. J Exp Bot 69(14):3401–3411

    Article  CAS  PubMed  Google Scholar 

  • Bailly C (2019) The signalling role of ROS in the regulation of seed germination and dormancy. Biochem J 476(20):3019–3032

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Roychoudhury A (2018) Abiotic stress, generation of reactive oxygen species, and their consequences: an overview. Reactive oxygen species in plants: boon or bane? In Revisiting the role of ROS, pp 23–50

    Google Scholar 

  • Banerjee A, Roychoudhury A (2019) Role of glutathione in plant abiotic stress tolerance. In Reactive oxygen, nitrogen and sulfur species in plants: production, metabolism, signaling and defense mechanisms, pp 159–172

    Google Scholar 

  • Bashir MA, Silvestri C, Coppa E, Brunori E, Cristofori V, Rugini E, Ahmad T, Hafiz IA, Abbasi NA, Nawaz Shah MK, Astolfi S (2021) Response of olive shoots to salinity stress suggests the involvement of sulfur metabolism. Plants 10(2):350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basit F, Ulhassan Z, Mou Q, Nazir MM, Hu J, Hu W, Song W, Sheteiwy MS, Zhou W, Bhat JA, Jeddi K (2022) Seed priming with nitric oxide and/or spermine mitigate the chromium toxicity in rice (Oryza sativa) seedlings by improving the carbon-assimilation and minimising the oxidative damages. Funct Plant Biol 50(2):121–135

    Google Scholar 

  • Basu S, Kumari S, Kumar P, Kumar G, Rajwanshi R (2021) Redox imbalance impedes photosynthetic activity in rice by disrupting cellular membrane integrity and induces programmed cell death under submergence. Physiol Plant 172(3):1764–1778

    Article  CAS  PubMed  Google Scholar 

  • Ben Massoud M, Kharbech O, Mahjoubi Y, Chaoui A, Wingler A (2022) Effect of exogenous treatment with nitric oxide (NO) on redox homeostasis in barley seedlings (Hordeum vulgare L.) under copper stress. J Soil Sci Plant Nutr 22:1604–1617

    Google Scholar 

  • Bhat JA, Ahmad P, Corpas FJ (2021) Main nitric oxide (NO) hallmarks to relieve arsenic stress in higher plants. J Haz Mater 406:124289

    Article  CAS  Google Scholar 

  • Bhattacharjee S (2019) ROS and regulation of photosynthesis. In Reactive oxygen species in plant biology. Springer, New Delhi, pp 107–125

    Google Scholar 

  • Calatrava V, Chamizo-Ampudia A, Sanz-Luque E, Ocaña-Calahorro F, Llamas A, Fernandez E, Galvan A (2017) How Chlamydomonas handles nitrate and the nitric oxide cycle. J Exp Bot 68(10):2593–2602

    Article  CAS  PubMed  Google Scholar 

  • Cao X, Zhu C, Zhong C, Zhang J, Wu L, ** Q, Ma Q (2019) Nitric oxide synthase-mediated early nitric oxide burst alleviates water stress-induced oxidative damage in ammonium-supplied rice roots. BMC Plant Biol 19(1):1–14

    Article  Google Scholar 

  • Cassia R, Amenta M, Fernández MB, Nocioni M, Dávila V (2019) The role of nitric oxide in the antioxidant defense of plants exposed to UV‐B radiation. Reactive oxygen, nitrogen and sulfur species in plants: production, metabolism, signaling and defense mechanisms. Wiley, pp 555–572

    Google Scholar 

  • Cassia R, Nocioni M, Correa-Aragunde N, Lamattina L (2018) Climate change and the impact of greenhouse gasses: CO2 and NO, friends and foes of plant oxidative stress. Front Plant Sci 9:273

    Article  PubMed  PubMed Central  Google Scholar 

  • Christou A, Manganaris GA, Fotopoulos V (2014) Systemic mitigation of salt stress by hydrogen peroxide and sodium nitroprusside in strawberry plants via transcriptional regulation of enzymatic and non-enzymatic antioxidants. Environ Exp Bot 107:46–54

    Article  CAS  Google Scholar 

  • Corpas FJ, Palma JM, Río LAD, Barroso JB (2009) Evidence supporting the existence of L-arginine-dependent nitric oxide synthase activity in plants. New Phytolog 184, 9–14

    Google Scholar 

  • Couée I, Sulmon C, Gouesbet G, El Amrani A (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57(3):449–459

    Article  PubMed  Google Scholar 

  • Czarnocka W, Karpiński S (2018) Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Rad Biol Med 122:4–20

    Article  CAS  PubMed  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Env Sci 2:53

    Article  Google Scholar 

  • Desikan R, Griffiths R, Hancock J, Neill S (2002) A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc Natl Acad Sci 99(25):16314–16318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong N, Li Y, Qi J, Chen Y, Hao Y (2018) Nitric oxide synthase-dependent nitric oxide production enhances chilling tolerance of walnut shoots in vitro via involvement chlorophyll fluorescence and other physiological parameter levels. Sci Horticult 230:68–77

    Article  CAS  Google Scholar 

  • Dumanović J, Nepovimova E, Natić M, Kuča K, Jaćević V (2021) The significance of reactive oxygen species and antioxidant defense system in plants: a concise overview. Front Plant Sci 11:552969

    Article  PubMed  PubMed Central  Google Scholar 

  • Farooq MA, Niazi AK, Akhtar J, Farooq M, Souri Z, Karimi N, Rengel Z (2019) Acquiring control: the evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses. Plant Physiol Biochem 141:353–369

    Article  CAS  PubMed  Google Scholar 

  • Fatma M, Masood A, Per TS, Khan NA (2016a) Nitric oxide alleviates salt stress inhibited photosynthetic performance by interacting with sulfur assimilation in mustard. Front Plant Sci 7:521

    Article  PubMed  PubMed Central  Google Scholar 

  • Fatma M, Masood A, Per TS, Rasheed F, Khan NA (2016b) Interplay between nitric oxide and sulfur assimilation in salt tolerance in plants. Crop J 4(3):153–161

    Article  Google Scholar 

  • Foyer CH (2018) Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environ Exp Bot 154:134–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frukh A, Liaqat S, Ahmad A (2022) Role of nitric oxide in abiotic stress. In Nitric oxide in plants: a molecule with dual roles. Wiley, pp 42–58

    Google Scholar 

  • Gao Z, Zhang J, Zhang J, Zhang W, Zheng L, Borjigin T, Wang Y (2022) Nitric oxide alleviates salt-induced stress damage by regulating the ascorbate–glutathione cycle and Na+/K+ homeostasis in Nitraria tangutorum Bobr. Plant Physiol Biochem 173:46–58

    Article  CAS  PubMed  Google Scholar 

  • Gautam H, Fatma M, Sehar Z, Mir IR, Khan NA (2022) Hydrogen sulfide, ethylene, and nitric oxide regulate redox homeostasis and protect photosynthetic metabolism under high temperature stress in rice plants. Antioxidants 11(8):1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gautam H, Sehar Z, Rehman MT, Hussain A, AlAjmi MF, Khan NA (2021) Nitric oxide enhances photosynthetic nitrogen and sulfur-use efficiency and activity of ascorbate-glutathione cycle to reduce high temperature stress-induced oxidative stress in rice (Oryza sativa L.) plants. Biomolecules 11(2):305

    Google Scholar 

  • Ghorbani A, Pishkar L, Roodbari N, Pehlivan N, Wu C (2021) Nitric oxide could allay arsenic phytotoxicity in tomato (Solanum lycopersicum L.) by modulating photosynthetic pigments, phytochelatin metabolism, molecular redox status and arsenic sequestration. Plant Physiol Biochem 167:337–348

    Article  CAS  PubMed  Google Scholar 

  • Goyal V, Jhanghel D, Mehrotra S (2021) Emerging warriors against salinity in plants: nitric oxide and hydrogen sulphide. Physiol Plant 171(4):896–908

    Article  CAS  PubMed  Google Scholar 

  • Gupta KJ, Kumari A, Florez-Sarasa I, Fernie AR, Igamberdiev AU (2018) Interaction of nitric oxide with the components of the plant mitochondrial electron transport chain. J Exp Bot 69(14):3413–3424

    Google Scholar 

  • Gupta KJ, Kaladhar VC, Fitzpatrick TB, Fernie AR, Møller IM, Loake GJ (2021) Nitric oxide regulation of plant metabolism. Mol Plant 15(2):228–242

    Google Scholar 

  • Hajihashemi S, Skalicky M, Brestic M, Pavla V (2020) Cross-talk between nitric oxide, hydrogen peroxide and calcium in salt-stressed Chenopodium quinoa Willd. At seed germination stage. Plant Physiol Biochem 154:657–664

    Article  CAS  PubMed  Google Scholar 

  • Han RC, Li CY, Rasheed A, Pan XH, Shi QH, Wu ZM (2022) Reducing phosphorylation of nitrate reductase improves nitrate assimilation in rice. J Integr Agric 21(1):15–25

    Article  CAS  Google Scholar 

  • Hancock JT, Neill SJ (2019) Nitric oxide: its generation and interactions with other reactive signaling compounds. Plants 8(2):41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Anee TI, Fujita M (2017) Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiol Mol Biol Plants 23(2):249–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Bhuyan MHMB, Mahmud JA, Nahar K, Mohsin SM, Parvin K, Fujita M (2018) Interaction of sulfur with phytohormones and signaling molecules in conferring abiotic stress tolerance to plants. Plant Signal Behav 13(5):e1477905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Bhuyan MB, Anee TI, Parvin K, Nahar K, Mahmud JA, Fujita M (2019) Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants 8(9):384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Bhuyan MB, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9(8):681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Inafuku M, Nahar K, Fujita M, Oku H (2021) Nitric oxide regulates plant growth, physiology, antioxidant defense, and ion homeostasis to confer salt tolerance in the mangrove species Kandelia obovata. Antioxidants 10(4):611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain MA, Munné-Bosch S, Burritt DJ, Diaz-Vivancos P, Fujita M, Lorence A (eds) (2017) Ascorbic acid in plant growth, development and stress tolerance. Springer International Publishing, Basel, Switzerland, p 514

    Google Scholar 

  • Hu Y, You J, Liang X (2015) Nitrate reductase-mediated nitric oxide production is involved in copper tolerance in shoots of hulless barley. Plant Cell Rep 34(3):367–379

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Zhu C, Hussain S, Huang J, Liang Q, Zhu L, Cao X, Kong Y, Li Y, Wang L, Li J (2020) Effects of nitric oxide on nitrogen metabolism and the salt resistance of rice (Oryza sativa L.) seedlings with different salt tolerances. Plant Physiol Biochem 155:374–383

    Article  CAS  PubMed  Google Scholar 

  • Hussain A, Imran QM, Shahid M, Yun BW (2022) Nitric oxide synthase in the plant kingdom. In Nitric Oxide in Plant Biology. Academic Press, 43–52

    Google Scholar 

  • Igamberdiev AU, Bykova NV, Hill RD (2006) Nitric oxide scavenging by barley hemoglobin is facilitated by a monodehydroascorbate reductase-mediated ascorbate reduction of methemoglobin. Planta 223(5):1033–1040

    Article  CAS  PubMed  Google Scholar 

  • Iqbal N, Umar S, Khan NA, Corpas FJ (2021) Nitric oxide and hydrogen sulfide coordinately reduce glucose sensitivity and decrease oxidative stress via ascorbate-glutathione cycle in heat-stressed wheat (Triticum aestivum L.) plants. Antioxidants 10(1):108

    Google Scholar 

  • Iqbal N, Sehar Z, Fatma M, Umar S, Sofo A, Khan NA (2022) Nitric oxide and abscisic acid mediate heat stress tolerance through regulation of osmolytes and antioxidants to protect photosynthesis and growth in wheat plants. Antioxidants 11(2):372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacques S, Ghesquière B, De Bock PJ, Demol H, Wahni K, Willems P, Messens J, Van Breusegem F, Gevaert K (2015) Protein methionine sulfoxide dynamics in Arabidopsis thaliana under oxidative stress [S]. Mol Cell Prot 14(5):1217–1229

    Article  CAS  Google Scholar 

  • Jahan B, AlAjmi MF, Rehman MT, Khan NA (2020) Treatment of nitric oxide supplemented with nitrogen and sulfur regulates photosynthetic performance and stomatal behavior in mustard under salt stress. Physiol Plant 168(2):490–510

    CAS  PubMed  Google Scholar 

  • Jimenez A, Hernandez JA, del Río LA, Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114(1):275–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung HI, Kong MS, Lee BR, Kim TH, Chae MJ, Lee EJ, Jung GB, Lee CH, Sung JK, Kim YH (2019) Exogenous glutathione increases arsenic translocation into shoots and alleviates arsenic-induced oxidative stress by sustaining ascorbate–glutathione homeostasis in rice seedlings. Front Plant Sci 10:1089

    Article  PubMed  PubMed Central  Google Scholar 

  • Kabir AH, Akther MS, Skalicky M, Das U, Gohari G, Brestic M, Hossain M (2021) Downregulation of Zn-transporters along with Fe and redox imbalance causes growth and photosynthetic disturbance in Zn-deficient tomato. Sci Rep 11(1):1–12

    Article  Google Scholar 

  • Kaiser WM, Planchet E, Rümer S (2018) Nitrate reductase and nitric oxide. In Annual plant reviews online. Wiley, 127–145

    Google Scholar 

  • Kao CH (2017) Mechanisms of salt tolerance in rice plants: cell wall-related genes and expansins. J Taiwan Agric Res 66:87–93

    CAS  Google Scholar 

  • Katano K, Honda K, Suzuki N (2018) Integration between ROS regulatory systems and other signals in the regulation of various types of heat responses in plants. Int J Mol Sci 19(11):3370

    Article  PubMed  PubMed Central  Google Scholar 

  • Kataria S, Jain M, Tripathi DK, Singh VP (2020) Involvement of nitrate reductase-dependent nitric oxide production in magnetopriming-induced salt tolerance in soybean. Physiol Plant 168(2):422–436

    CAS  PubMed  Google Scholar 

  • Kaya C, Akram NA, Sürücü A, Ashraf M (2019a) Alleviating effect of nitric oxide on oxidative stress and antioxidant defence system in pepper (Capsicum annuum L.) plants exposed to cadmium and lead toxicity applied separately or in combination. Sci Horticult 255:52–60

    Article  CAS  Google Scholar 

  • Kaya C, Ashraf M, Wijaya L, Ahmad P (2019b) The putative role of endogenous nitric oxide in brassinosteroid-induced antioxidant defence system in pepper (Capsicum annuum L.) plants under water stress. Plant Physiol Biochem 143:119–128

    Article  CAS  PubMed  Google Scholar 

  • Kaya C, Sarioğlu A, Akram NA, Ashraf M (2019c) Thiourea-mediated nitric oxide production enhances tolerance to boron toxicity by reducing oxidative stress in bread wheat (Triticum aestivum L.) and durum wheat (Triticum durum Desf.) plants. J Plant Growth Regulat 38(3):1094–1109

    Google Scholar 

  • Kaya C, Ashraf M, Alyemeni MN, Ahmad P (2020a) Nitrate reductase rather than nitric oxide synthase activity is involved in 24-epibrassinolide-induced nitric oxide synthesis to improve tolerance to iron deficiency in strawberry (Fragaria× annassa) by up-regulating the ascorbate-glutathione cycle. Plant Physiol Biochem 151:486–499

    Article  CAS  PubMed  Google Scholar 

  • Kaya C, Ashraf M, Alyemeni MN, Ahmad P (2020b) The role of nitrate reductase in brassinosteroid-induced endogenous nitric oxide generation to improve cadmium stress tolerance of pepper plants by upregulating the ascorbate-glutathione cycle. Ecotoxicol Environ Saf 196:110483

    Article  CAS  PubMed  Google Scholar 

  • Kaya C, Ashraf M, Alyemeni MN, Ahmad P (2020c) The role of endogenous nitric oxide in salicylic acid-induced up-regulation of ascorbate-glutathione cycle involved in salinity tolerance of pepper (Capsicum annuum L.) plants. Plant Physiol Biochem 147:10–20

    Article  CAS  PubMed  Google Scholar 

  • Khan MN, Mobin M, Abbas ZK (2015) Nitric oxide and high temperature stress: a physiological perspective. In Nitric oxide action in abiotic stress responses in plants. Springer, Cham, pp 77–93

    Google Scholar 

  • Khan MN, AlSolami MA, Basahi RA, Siddiqui MH, Al-Huqail AA, Abbas ZK, Khan F (2020) Nitric oxide is involved in nano-titanium dioxide-induced activation of antioxidant defense system and accumulation of osmolytes under water-deficit stress in Vicia faba L. Ecotoxicol Environ Saf 190:110152

    Article  CAS  PubMed  Google Scholar 

  • Kharbech O, Sakouhi L, Massoud MB, Mur LAJ, Corpas FJ, Djebali W, Chaoui A (2020) Nitric oxide and hydrogen sulfide protect plasma membrane integrity and mitigate chromium-induced methylglyoxal toxicity in maize seedlings. Plant Physiol Biochem 157:244–255

    Article  CAS  PubMed  Google Scholar 

  • Khator K, Shekhawat GS (2019) Nitric oxide improved salt stress tolerance by osmolyte accumulation and activation of antioxidant defense system in seedling of B. juncea (L.) Czern. Vegetos 32(4):583–592

    Google Scholar 

  • Khator K, Saxena I, Shekhawat GS (2021) Nitric oxide induced Cd tolerance and phytoremediation potential of B. juncea by the modulation of antioxidant defense system and ROS detoxification. Biometals 34(1):15–32

    Google Scholar 

  • Kishorekumar R, Bulle M, Wany A, Gupta KJ (2020) An overview of important enzymes involved in nitrogen assimilation of plants. In Nitrogen metabolism in plants. Springer, pp 1–13

    Google Scholar 

  • Klein A, Hüsselmann L, Keyster M, Ludidi N (2018) Exogenous nitric oxide limits salt-induced oxidative damage in maize by altering superoxide dismutase activity. S Afr J Bot 115:44–49

    Article  CAS  Google Scholar 

  • Kolbert Z, Ortega L, Erdei L (2010) Involvement of nitrate reductase (NR) in osmotic stress-induced NO generation of Arabidopsis thaliana L. roots. J Plant Physiol 167(1):77–80

    Google Scholar 

  • Kumar P, Pathak S (2018) Nitric oxide: a key driver of signaling in plants. MOJ Eco Environ Sci 3(3):145–148

    Google Scholar 

  • Kushwaha BK, Ali HM, Siddiqui MH, Singh VP (2020) Nitric oxide-mediated regulation of sub-cellular chromium distribution, ascorbate–glutathione cycle and glutathione biosynthesis in tomato roots under chromium (VI) toxicity. J Biotechnol 318:68–77

    Article  CAS  PubMed  Google Scholar 

  • León J, Costa‐Broseta Á (2020) Present knowledge and controversies, deficiencies, and misconceptions on nitric oxide synthesis, sensing, and signaling in plants. Plant Cell Environ 43(1):1–15

    Google Scholar 

  • Li C, Song Y, Guo L, Gu X, Muminov MA, Wang T (2018) Nitric oxide alleviates wheat yield reduction by protecting photosynthetic system from oxidation of ozone pollution. Environ Poll 236:296–303

    Article  CAS  Google Scholar 

  • Liu J, Hasanuzzaman M, Wen H, Zhang J, Peng T, Sun H, Zhao Q (2019) High temperature and drought stress cause abscisic acid and reactive oxygen species accumulation and suppress seed germination growth in rice. Protoplasma 256(5):1217–1227

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Hu B, Chu C (2022a) Nitrogen assimilation in plants: current status and future prospects. J Genet Genom 49(5):394–404

    Article  Google Scholar 

  • Liu Y, Jiang Z, Ye Y, Wang D, ** S (2022b) Enhanced salt tolerance of Torreya grandis genders is related to nitric oxide level and antioxidant capacity. Front Plant Sci, 13

    Google Scholar 

  • Liu Y, Yuan Y, Jiang Z, ** S (2022c) Nitric oxide improves salt tolerance of Cyclocarya paliurus by regulating endogenous glutathione level and antioxidant capacity. Plants 11(9):1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Huang D, Chen C, Zhu S, Gao J (2019) Regulation of ascorbate-glutathione cycle in peaches via nitric oxide treatment during cold storage. Sci Horticult 247:400–406

    Article  CAS  Google Scholar 

  • Majeed S, Nawaz F, Naeem M, Ashraf MY (2018) Effect of exogenous nitric oxide on sulfur and nitrate assimilation pathway enzymes in maize (Zea mays L.) under drought stress. Acta Physiol Plant 40(12):1–14

    Google Scholar 

  • Mattila H, Khorobrykh S, Havurinne V, Tyystjärvi E (2015) Reactive oxygen species: reactions and detection from photosynthetic tissues. J Photochem Photobiol B Biol 152:176–214

    Article  CAS  Google Scholar 

  • Maurya AK (2020) Oxidative stress in crop plants. In Agronomic crops. Springer, Singapore, pp 349–380

    Google Scholar 

  • Meyer C, Lea US, Provan F, Kaiser WM, Lillo C (2005) Is nitrate reductase a major player in the plant NO (nitric oxide) game? Photosynth Res 83:181–189

    Google Scholar 

  • Mfarrej MFB, Wang X, Hamzah Saleem M, Hussain I, Rasheed R, Arslan Ashraf M, Nasser Alyemeni M (2022) Hydrogen sulphide and nitric oxide mitigate the negative impacts of waterlogging stress on wheat (Triticum aestivum L.). Plant Biol 24(4):670–683

    Google Scholar 

  • Mir IR, Rather BA, Masood A, Majid A, Sehar Z, Anjum NA, Sofo A, D’Ippolito I, Khan NA (2021) Soil sulfur sources differentially enhance cadmium tolerance in Indian mustard (Brassica juncea L.). Soil Syst 5(2):29

    Google Scholar 

  • Mishra S, Jha AB, Dubey RS (2011) Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma 248(3):565–577

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37(3):118–125

    Article  CAS  PubMed  Google Scholar 

  • Müller-Schüssele SJ, Wang R, Gütle DD, Romer J, Rodriguez-Franco M, Scholz M, Buchert F, Lüth VM, Kopriva S, Dörmann P, Schwarzländer M (2020) Chloroplasts require glutathione reductase to balance reactive oxygen species and maintain efficient photosynthesis. Plant J 103(3):1140–1154

    Article  PubMed  Google Scholar 

  • Munns R, Gilliham M (2015) Salinity tolerance of crops–what is the cost? New Phytolog 208(3):668–673

    Article  CAS  Google Scholar 

  • Nabi RBS, Tayade R, Hussain A, Kulkarni KP, Imran QM, Mun BG, Yun BW (2019) Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress. Environ Exp Bot 161:120–133

    Article  CAS  Google Scholar 

  • Nadarajah KK (2020) ROS homeostasis in abiotic stress tolerance in plants. Int J Mol Sci 21(15):5208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naveed M, Sajid H, Mustafa A, Niamat B, Ahmad Z, Yaseen M, Kamran M, Rafique M, Ahmar S, Chen JT (2020) Alleviation of salinity-induced oxidative stress, improvement in growth, physiology and mineral nutrition of canola (Brassica napus L.) through calcium-fortified composted animal manure. Sustainability 12(3):846

    Google Scholar 

  • Nguyen KH, Mostofa MG, Watanabe Y, Tran CD, Rahman MM, Tran LSP (2019) Overexpression of GmNAC085 enhances drought tolerance in Arabidopsis by regulating glutathione biosynthesis, redox balance and glutathione-dependent detoxification of reactive oxygen species and methylglyoxal. Environ Exp Bot 161:242–254

    Article  CAS  Google Scholar 

  • Nouman W, Basra SMA, Yasmeen A, Gull T, Hussain SB, Zubair M, Gul R (2014) Seed priming improves the emergence potential, growth and antioxidant system of Moringa oleifera under saline conditions. Plant Growth Regulat 73(3):267–278

    Article  CAS  Google Scholar 

  • Pan QN, Geng CC, Li DD, Xu SW, Mao DD, Umbreen S, Loake GJ, Cui BM (2019) Nitrate reductase-mediated nitric oxide regulates the leaf shape in Arabidopsis by mediating the homeostasis of reactive oxygen species Int J Mol Sci 20(9):2235

    Google Scholar 

  • Pandey S, Kumari A, Shree M, Kumar V, Singh P, Bharadwaj C, Loake GJ, Parida SK, Masakapalli SK, Gupta KJ (2019) Nitric oxide accelerates germination via the regulation of respiration in chickpea. J Exp Bot 70(17):4539–4555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Per TS, Masood A, Khan NA (2017) Nitric oxide improves S-assimilation and GSH production to prevent inhibitory effects of cadmium stress on photosynthesis in mustard (Brassica juncea L.). Nitric Oxide 68:111–124

    Article  CAS  PubMed  Google Scholar 

  • Piacentini D, Ronzan M, Fattorini L, Della Rovere F, Massimi L, Altamura MM, Falasca G (2020) Nitric oxide alleviates cadmium-but not arsenic-induced damages in rice roots. Plant Physiol Biochem 151:729–742

    Article  CAS  PubMed  Google Scholar 

  • Prakash V, Singh VP, Tripathi DK, Sharma S, Corpas FJ (2021) Nitric oxide (NO) and salicylic acid (SA): a framework for their relationship in plant development under abiotic stress. Plant Biol 23:39–49

    Article  CAS  PubMed  Google Scholar 

  • Praveen A, Pandey A, Gupta M (2019) Nitric oxide alters nitrogen metabolism and PIN gene expressions by playing protective role in arsenic challenged Brassica juncea L. Ecotoxicol Environ Saf 176:95–107

    Article  CAS  PubMed  Google Scholar 

  • Reda M, Golicka A, Kabała K, Janicka M (2018) Involvement of NR and PM-NR in NO biosynthesis in cucumber plants subjected to salt stress. Plant Sci 267:55–64

    Article  CAS  PubMed  Google Scholar 

  • Rezayian M, Ebrahimzadeh H, Niknam V (2020) Nitric oxide stimulates antioxidant system and osmotic adjustment in soybean under drought stress. J Soil Sci Plant Nutr 20(3):1122–1132

    Article  CAS  Google Scholar 

  • Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53(366):103–110

    Google Scholar 

  • Saad-Allah KM, Ragab GA (2020) Sulfur nanoparticles mediated improvement of salt tolerance in wheat relates to decreasing oxidative stress and regulating metabolic activity. Physiol Mol Biol Plants 26(11):2209–2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sang J, Jiang M, Lin F, Xu S, Zhang A, Tan M (2008) Nitric oxide reduces hydrogen peroxide accumulation involved in water stress-induced subcellular anti-oxidant defense in maize plants. J Integr Plant Biol 50(2):231–243

    Article  CAS  PubMed  Google Scholar 

  • Santolini J, André F, Jeandroz S, Wendehenne D (2017) Nitric oxide synthase in plants: where do we stand? Nitric Oxide 63:30–38

    Article  CAS  PubMed  Google Scholar 

  • Shams M, Ekinci M, Ors S, Turan M, Agar G, Kul R, Yildirim E (2019) Nitric oxide mitigates salt stress effects of pepper seedlings by altering nutrient uptake, enzyme activity and osmolyte accumulation. Physiol Mol Biol Plants 25:1149–1161

    Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1

    Google Scholar 

  • Siddiqui MH, Alamri S, Alsubaie QD, Ali HM, Khan MN, Al-Ghamdi A, Ibrahim AA, Alsadon A (2020) Exogenous nitric oxide alleviates sulfur deficiency-induced oxidative damage in tomato seedlings. Nitric Oxide 94:95–107

    Article  CAS  PubMed  Google Scholar 

  • Singh VP, Singh S, Kumar J, Prasad SM (2015) Hydrogen sulfide alleviates toxic effects of arsenate in pea seedlings through up-regulation of the ascorbate–glutathione cycle: possible involvement of nitric oxide. J Plant Physiol 181:20–29

    Article  CAS  PubMed  Google Scholar 

  • Singhal RK, Jatav HS, Aftab T, Pandey S, Mishra UN, Chauhan J, Chand S, Saha D, Dadarwal BK, Chandra K, Khan MA (2021) Roles of nitric oxide in conferring multiple abiotic stress tolerance in plants and crosstalk with other plant growth regulators. J Plant Growth Regulat 40(6):2303–2328

    Article  CAS  Google Scholar 

  • Sohag AAM, Tahjib-Ul-Arif M, Afrin S, Khan MK, Hannan MA, Skalicky M, Mortuza MG, Brestic M, Hossain MA, Murata Y (2020) Insights into nitric oxide-mediated water balance, antioxidant defence and mineral homeostasis in rice (Oryza sativa L.) under chilling stress. Nitric Oxide 100:7–16

    Article  PubMed  Google Scholar 

  • Soliman M, Alhaithloul HA, Hakeem KR, Alharbi BM, El-Esawi M, Elkelish A (2019) Exogenous nitric oxide mitigates nickel-induced oxidative damage in eggplant by upregulating antioxidants, osmolyte metabolism, and glyoxalase systems. Plants 8(12):562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souri Z, Karimi N, Farooq MA, Sandalio LM (2020) Nitric oxide improves tolerance to arsenic stress in Isatis cappadocica desv Shoots by enhancing antioxidant defenses. Chemosphere 239:124523

    Article  CAS  PubMed  Google Scholar 

  • Stöhr C, Strube F, Marx G, Ullrich WR, Rockel P (2001) A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. Planta 212(5):835–841

    PubMed  Google Scholar 

  • Sun LR, Yue CM, Hao FS (2019) Update on roles of nitric oxide in regulating stomatal closure. Plant Signal Behav 14(10):e1649569

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang M, Li Z, Luo L, Cheng B, Zhang Y, Zeng W, Peng Y (2020) Nitric oxide signal, nitrogen metabolism, and water balance affected by γ-aminobutyric acid (GABA) in relation to enhanced tolerance to water stress in cree** bentgrass. Int J Mol Sci 21(20):7460

    Google Scholar 

  • Tripathi DK, Mishra RK, Singh S, Singh S, Vishwakarma K, Sharma S, Chauhan DK (2017) Nitric oxide ameliorates zinc oxide nanoparticles phytotoxicity in wheat seedlings: implication of the ascorbate–glutathione cycle. Front Plant Sci 8:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vazquez MM, Casalongué CA, París R (2019) Nitrate reductase mediates nitric oxide-dependent gravitropic response in Arabidopsis thaliana roots. Plant Signal Behav 14(4):e1578631

    Article  PubMed  PubMed Central  Google Scholar 

  • Verma N, Tiwari S, Singh VP, Prasad SM (2020) Nitric oxide in plants: an ancient molecule with new tasks. Plant Growth Regulat 90(1):1–13

    Article  CAS  Google Scholar 

  • Vezza ME, Luna DF, Agostini E, Talano MA (2019) Glutathione, a key compound for As accumulation and tolerance in soybean plants treated with AsV and AsIII. Environ Exp Bot 162:272–282

    Article  CAS  Google Scholar 

  • Wang Y, **ong F, Nong S, Liao J, **ng A, Shen Q, Zhu X (2020) Effects of nitric oxide on the GABA, polyamines, and proline in tea (Camellia sinensis) roots under cold stress. Sci Rep 10(1):12240

    Google Scholar 

  • Wang D, Huang H, Jiang Y, Duan X, Lin X, Aghdam MS, Luo Z (2022) Exogenous phytosulfokine α (PSKα) alleviates chilling injury of banana by modulating metabolisms of nitric oxide, polyamine, proline, and γ-aminobutyric acid. Food Chem 380:132179

    Article  CAS  PubMed  Google Scholar 

  • Wany A, Gupta AK, Brotman Y, Pandey S, Vishwakarma AP, Kumari A, Singh P, Pathak PK, Igamberdiev AU, Gupta KJ (2018) Nitric oxide is important for sensing and survival under hypoxia in Arabidopsis. BioRxiv, 462218

    Google Scholar 

  • Weisslocker-Schaetzel M, André F, Touazi N, Foresi N, Lembrouk M, Dorlet P, Frelet-Barrand A, Lamattina L, Santolini J (2017) The NOS-like protein from the microalgae Ostreococcus tauri is a genuine and ultrafast NO-producing enzyme. Plant Sci 265:100–111

    Article  CAS  PubMed  Google Scholar 

  • Wilson ID, Neill SJ, Hancock JT (2008) Nitric oxide synthesis and signalling in plants. Plant Cell Environ 31(5):622–631

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Cai S, Wang Y, Chen ZH (2016) Loss of nitrate reductases NIA1 and NIA2 impairs stomatal closure by altering genes of core ABA signaling components in Arabidopsis. Plant Signal Behav 11(6):1456–1469

    Article  Google Scholar 

  • Zhao G, Zhao Y, Lou W, Su J, Wei S, Yang X, Shen W (2019) Nitrate reductase-dependent nitric oxide is crucial for multi-walled carbon nanotube-induced plant tolerance against salinity. Nanoscale 11(21):10511–10523

    Article  CAS  PubMed  Google Scholar 

  • Zhao MG, Chen L, Zhang LL, Zhang WH (2009) Nitric reductase-dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiol 151(2):755–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou T, Zheng LP, Yuan HY, Yuan YF, Wang JW (2012) The nitric oxide production and NADPH-diaphorase activity in root tips of Vicia faba L. under copper toxicity. Plant Omics 5(2):115–121

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shahid Umar or Noushina Iqbal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seth, T., Asija, S., Umar, S., Iqbal, N. (2023). Nitric Oxide and Cellular Redox Homeostasis in Plants. In: Fatma, M., Sehar, Z., Khan, N.A. (eds) Gasotransmitters Signaling in Plant Abiotic Stress. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-031-30858-1_7

Download citation

Publish with us

Policies and ethics

Navigation