Fungal-Based Synthesis to Generate Nanoparticles for Nanobioremediation

  • Chapter
  • First Online:
Green Nanoremediation

Abstract

Nanotechnology has gained immense popularity with its innumerable biological agents, which are replacing toxic chemicals with an advanced technique for reducing and stabilizing nanoparticles (NPs). Fungal nanotechnology has represented exceptional technique in this area, owing to its nontoxicity, eco-friendly nature for fungal NPs, and nanostructure synthesis by reducing enzymes using either intracellular or extracellular techniques. Further, ease lies in the scale up- and downstream process owing to the increased surface area of the mycelial cells. Fungi and yeast are highly potential secretors of extracellular enzyme, grow fast, and are simple to maintain. Biogenic fungal NPs have been applied in the field of industry, agriculture, medicine, and other sectors too, and are used as bioremediators, drug delivery, biosensors, MRI, medical imaging, cancer therapy, etc. Mycoremediation can serve as a facilitator in bioremediating the toxins by immobilizing or inducing the synthesis of enzymes. Fungal NPs have shown an effective and efficient clean-up of the environment from the chemical pollutants and heavy metals, reducing total time consumption and total cost reduction. Fungal species of A. flavus and T. harzianum have shown promising crude oil degrading abilities with silver NPs at a very low concentration. Other fungal species used as resources for metal NPs that have been useful as bioremediators include Aspergillus, Fusarium, Penicillium, and Verticillium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 181.89
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdeen, M., Sabry, S., Ghozlan, H., El-Gendy, A. A., & Carpenter, E. E. (2016). Microbial-physical synthesis of Fe and Fe3O4 magnetic nanoparticles using Aspergillus niger YESM1 and supercritical condition of ethanol. Journal of Nanomaterials, 2016, 1–7. https://doi.org/10.1155/2016/9174891

    Article  CAS  Google Scholar 

  • AbdelRahim, K., Mahmoud, S. Y., Ali, A. M., Almaary, K. S., Mustafa, A. E.-Z. M. A., & Husseiny, S. M. (2017). Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifer. Saudi Journal of Biological Sciences, 24(1), 208–216. https://doi.org/10.1016/j.sjbs.2016.02.025

    Article  CAS  Google Scholar 

  • Adarsha, J. R., Ravishankar, T. N., Ananda, A., Manjunatha, C. R., Shilpa, B. M., & Ramakrishnappa, T. (2022). Hydrothermal synthesis of novel heterostructured Ag/TiO2/CuFe2O4 nanocomposite: Characterization, enhanced photocatalytic degradation of methylene blue dye, and efficient antibacterial studies. Water Environment Research, 94(6), e10744. https://doi.org/10.1002/wer.10744

    Article  CAS  Google Scholar 

  • Adebayo, E. A., Azeez, M. A., Alao, M. B., Oke, A. M., & Aina, D. A. (2021). Fungi as veritable tool in current advances in nanobiotechnology. Heliyon, 7(11), e08480. https://doi.org/10.1016/j.heliyon.2021.e08480

    Article  CAS  Google Scholar 

  • Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M. I., Kumar, R., & Sastry, M. (2003). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces, B: Biointerfaces, 28, 313.

    Article  CAS  Google Scholar 

  • Ahmed, H. M., Roy, A., Wahab, M., Ahmed, M., Othman-Qadir, G., Elesawy, B. H., et al. (2021). Applications of nanomaterials in agrifood and pharmaceutical industry. Journal of Nanomaterials, 2021, 1472096.

    Article  Google Scholar 

  • Alatraktchi, F. A. A., Zhang, Y., Noori, J. S., & Angelidaki, I. (2012). Surface area expansion of electrodes with grass-like nanostructures and gold nanoparticles to enhance electricity generation in microbial fuel cells. Bioresource Technology, 123, 177–183.

    Article  CAS  Google Scholar 

  • Alghuthaymi, M. A., Almoammar, H., Rai, M., Said-Galiev, E., & Abd-Elsalam, K. A. (2015). Myconanoparticles: Synthesis and their role in phytopathogens management. Biotechnology & Biotechnological Equipment, 29(2), 221–236. https://doi.org/10.1080/13102818.2015.1008194

    Article  CAS  Google Scholar 

  • Ananda, A., Ramakrishnappa, T., Archana, S., Reddy Yadav, L. S., Shilpa, B. M., Nagaraju, G., & Jayanna, B. K. (2022). Green synthesis of MgO nanoparticles using Phyllanthus emblica for Evans blue degradation and antibacterial activity. Materials Today: Proceedings, 49, 801–810. https://doi.org/10.1016/j.matpr.2021.05.340

    Article  CAS  Google Scholar 

  • Anil Kumar, S., Abyaneh, M. K., Gosavi, S. W., Kulkarni, S. K., Pasricha, R., Ahmad, A., & Khan, M. I. (2007). Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnology Letters, 29(3), 439–445. https://doi.org/10.1007/s10529-006-9256-7

    Article  CAS  Google Scholar 

  • Apte, M., Girme, G., Bankar, A., Ravi Kumar, A., & Zinjarde, S. (2013). 3, 4-dihydroxy-L-phenylalanine-derived melanin from Yarrowia lipolytica mediates the synthesis of silver and gold nanostructures. Journal of Nanbiotechnology, 11(1), 2. https://doi.org/10.1186/1477-3155-11-2

    Article  CAS  Google Scholar 

  • Archana, S., Jayanna, B. K., Ananda, A., Shilpa, B. M., Pandiarajan, D., Muralidhara, H. B., & Kumar, K. Y. (2021). Synthesis of nickel oxide grafted graphene oxide nanocomposites – A systematic research on chemisorption of heavy metal ions and its antibacterial activity. Environmental Nanotechnology, Monitoring & Management, 16, 100486. https://doi.org/10.1016/j.enmm.2021.100486

    Article  CAS  Google Scholar 

  • Ashraf, S., Siddiqa, A., Shahida, S., & Qaisar, S. (2019). Titanium-based nanocomposite materials for arsenic removal from water: A review. Heliyon, 5(5), e01577. https://doi.org/10.1016/j.heliyon.2019.e01577

    Article  Google Scholar 

  • Baban, D. F., & Seymour, L. W. (1998). Control of tumour vascular permeability. Advanced Drug Delivery Reviews, 34(1), 109–119. https://doi.org/10.1016/S0169-409X(98)00003-9

    Article  CAS  Google Scholar 

  • Ballottin, D., Fulaz, S., Souza, M. L., Corio, P., Rodrigues, A. G., Souza, A. O., Gaspari, P. M., Gomes, A. F., Gozzo, F., & Tasic, L. (2016). Elucidating protein involvement in the stabilization of the biogenic silver nanoparticles. Nanoscale Research Letters, 11(1), 313. https://doi.org/10.1186/s11671-016-1538-y

    Article  CAS  Google Scholar 

  • Bao, H., Hao, N., Yang, Y., & Zhao, D. (2010). Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells. Nano Research, 3(7), 481–489. https://doi.org/10.1007/s12274-010-0008-6

    Article  CAS  Google Scholar 

  • Barage, S., Lakkakula, J., Sharma, A., Roy, A., Alghamdi, S., Almehmadi, M., et al. (2022). Nanomaterial in food packaging: A comprehensive review. Journal of Nanomaterials, 2022, 6053922.

    Article  Google Scholar 

  • Basavaraja, S., Balaji, S. D., Lagashetty, A., Rajasab, A. H., & Venkataraman, A. (2008). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Materials Research Bulletin, 43, 1164.

    Article  CAS  Google Scholar 

  • Benjamin, S. R., Lima, F. D., Florean, E. O. P. T., & Guedes, M. I. F. (2019). Current trends in nanotechnology for bioremediation. International Journal of Environment and Pollution, 66(1/2/3), 19. https://doi.org/10.1504/IJEP.2019.104526

    Article  CAS  Google Scholar 

  • Bhainsa, K. C., & D’Souza, S. F. (2006). Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids and Surfaces B: Biointerfaces, 47(2), 160–164. https://doi.org/10.1016/j.colsurfb.2005.11.026

    Article  CAS  Google Scholar 

  • Bharathidasan, R., & Panneerselvam, A. (2012). Biosynthesis and characterization of silver nanoparticles using endophytic fungi Aspergillus conicus, Penicillium janthinellum and Phomosis sp. International Journal of Pharmaceutical Sciences and Research, 3, 3163.

    CAS  Google Scholar 

  • Binupriya, A. R., Sathishkumar, M., & Yun, S.-I. (2010). Biocrystallization of silver and gold ions by inactive cell filtrate of Rhizopus stolonifer. Colloids and Surfaces B: Biointerfaces, 79(2), 531–534. https://doi.org/10.1016/j.colsurfb.2010.05.021

    Article  CAS  Google Scholar 

  • Borm, P. J. A., & Kreyling, W. (2004). Toxicological hazards of inhaled nanoparticles—Potential implications for drug delivery. Journal of Nanoscience and Nanotechnology, 4(5), 521–531. https://doi.org/10.1166/jnn.2004.081

    Article  CAS  Google Scholar 

  • Boroumand Moghaddam, A., Namvar, F., Moniri, M., Md. Tahir, P., Azizi, S., & Mohamad, R. (2015). Nanoparticles biosynthesized by fungi and yeast: A review of their preparation, properties, and medical applications. Molecules, 20(9), 16540–16565.

    Article  Google Scholar 

  • Brady, M. J., Lisay, C. M., Yurkovetskiy, A. V., & Sawan, S. P. (2003). Persistent silver disinfectant for the environmental control of pathogenic bacteria. American Journal of Infection Control, 31(4), 208–214. https://doi.org/10.1067/mic.2003.23

    Article  Google Scholar 

  • Buzea, C., Pacheco, I., & Robbie, K. (2007). Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases, 2, MR17–MR71.

    Article  Google Scholar 

  • Castro-Longoria, E. (2012). Production of platinum nanoparticles and nanoaggregates using Neurospora crassa. Journal of Microbiology and Biotechnology, 22(7), 1000–1004. https://doi.org/10.4014/jmb.1110.10085

    Article  CAS  Google Scholar 

  • Castro-Longoria, E., Vilchis-Nestor, A. R., & Avalos-Borja, M. (2011). Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids and Surfaces B: Biointerfaces, 83(1), 42–48. https://doi.org/10.1016/j.colsurfb.2010.10.035

    Article  CAS  Google Scholar 

  • Ceylan, A., Jastrzembski, K., & Shah, S. I. (2006). Enhanced solubility Ag-Cu nanoparticles and their thermal transport properties. Metallurgical and Materials Transactions A, 37(7), 2033–2038. https://doi.org/10.1007/BF02586123

    Article  Google Scholar 

  • Chandra, R., Kumar, V., Tripathi, S., & Sharma, P. (2017). Phytoremediation of industrial pollutants and life cycle assessment. In Phytoremediation of environmental pollutants. CRC Press.

    Google Scholar 

  • Chandrappa, C. P., Govindappa, M., Chandrasekar, N., Sarkar, S., Ooha, S., & Channabasava, R. (2016). Endophytic synthesis of silver chloride nanoparticles from Penicillium sp. of Calophyllum apetalum. Advances in Natural Sciences: Nanoscience and Nanotechnology, 7(2), 025016. https://doi.org/10.1088/2043-6262/7/2/025016

    Article  CAS  Google Scholar 

  • Chang, S. T., & Wasser, S. P. (2017). The cultivation and environmental impact of mushrooms. In Oxford research encyclopedia of environmental science. Oxford University Press.

    Google Scholar 

  • Chatterjee, S., Mahanty, S., Das, P., Chaudhuri, P., & Das, S. (2020). Biofabrication of iron oxide nanoparticles using manglicolous fungus Aspergillus niger BSC-1 and removal of Cr(VI) from aqueous solution. Chemical Engineering Journal, 385, 123790. https://doi.org/10.1016/j.cej.2019.123790

    Article  CAS  Google Scholar 

  • Chen, J. C., Lin, Z. H., & Ma, X. X. (2003). Evidence of the production of silver nanoparticles via pretreatment of Phoma sp.3.2883 with silver nitrate. Letters in Applied Microbiology, 37, 105.

    Article  CAS  Google Scholar 

  • Cheng, S., Li, N., Jiang, L., Li, Y., Xu, B., & Zhou, W. (2019). Biodegradation of metal complex Naphthol Green B and formation of iron–sulfur nanoparticles by marine bacterium Pseudoalteromonas sp CF10-13. Bioresource Technology, 273, 49–55. https://doi.org/10.1016/j.biortech.2018.10.082

    Article  CAS  Google Scholar 

  • Chowdhury, N. K., Choudhury, R., Gogoi, B., Chang, C. M., & Pandey, R. P. (2022). Microbial synthesis of gold nanoparticles and their application. Current Drug Targets, 23, 752–760.

    Article  CAS  Google Scholar 

  • Das, S. K., Khan, M. M. R., Guha, A. K., Das, A. R., & Mandal, A. B. (2012). Silver-nano biohybride material: Synthesis, characterization and application in water purification. Bioresource Technology, 124, 495–499. https://doi.org/10.1016/j.biortech.2012.08.071

    Article  CAS  Google Scholar 

  • Davies, R. L., & Etris, S. F. (1997). The development and functions of silver in water purification and disease control. Catalysis Today, 36(1), 107–114. https://doi.org/10.1016/S0920-5861(96)00203-9

    Article  CAS  Google Scholar 

  • Davis, A., Prakash, P., & Thamaraiselvi, K. (2017). Nanobioremediation technologies for sustainable environment. In Bioremediation and sustainable technologies for cleaner environment (pp. 13–33). Springer.

    Chapter  Google Scholar 

  • Dowlati, M., Sobhi, H. R., Esrafili, A., Farzad Kia, M., & Yeganeh, M. (2021). Heavy metals content in edible mushrooms: A systematic review, meta-analysis and health risk assessment. Trends in Food Science & Technology, 109, 527–535. https://doi.org/10.1016/j.tifs.2021.01.064

    Article  CAS  Google Scholar 

  • Duhan, J. S., Kumar, R., Kumar, N., Kaur, P., Nehra, K., & Duhan, S. (2017). Nanotechnology: The new perspective in precision agriculture. Biotechnology Reports, 15, 11–23. https://doi.org/10.1016/j.btre.2017.03.002

    Article  Google Scholar 

  • Durán, N., Marcato, P. D., Alves, O. L., De Souza, G. I., & Esposito, E. (2005). Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. Journal of Nanbiotechnology, 3(1), 8. https://doi.org/10.1186/1477-3155-3-8

    Article  Google Scholar 

  • Ealia, S. A. M., & Saravanakumar, M. P. (2017). A review on the classification, characterisation, synthesis of nanoparticles and their application. In IOP conference series: Materials science and engineering (Vol. 263, No. 3, p. 032019). IOP Publishing.

    Google Scholar 

  • Espeland, E., Caesar, A. J., Sainju, U. M., Lartey, R. T., & Gaskin, J. F. (2013). Effects of Agaricus lilaceps fairy rings on soil aggregation and microbial community structure in relation to growth stimulation of western wheatgrass (Pascopyrum smithii) in Eastern Montana rangeland. Microbial Ecology, 66, 120–131.

    Article  Google Scholar 

  • Fan, T.-X., Chow, S.-K., & Zhang, D. (2009). Biomorphic mineralization: From biology to materials. Progress in Materials Science, 54(5), 542–659. https://doi.org/10.1016/j.pmatsci.2009.02.001

    Article  CAS  Google Scholar 

  • Fayaz, A. M., Balaji, K., Girilal, M., Yadav, R., Kalaichelvan, P. T., & Venketesan, R. (2010). Biogenic synthesis of silver nano-particles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria. Nanomedicine: Nanotechnology, Biology and Medicine, 6, 103.

    Article  CAS  Google Scholar 

  • Gaikwad, S. C., Birla, S. S., Ingle, A. P., Gade, A. K., Marcato, P. D., Rai, M., & Duran, N. (2013). Screening of different Fusarium species to select potential species for the synthesis of silver nanoparticles. Journal of the Brazilian Chemical Society, 24(12), 1974–1982. https://doi.org/10.5935/0103-5053.20130247

    Article  CAS  Google Scholar 

  • Gajbhiye, M., Kesharwani, J., Ingle, A., Gade, A., & Rai, M. (2009). Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine: Nanotechnology, Biology and Medicine, 5(4), 382–386. https://doi.org/10.1016/j.nano.2009.06.005

  • Garg, S., & Roy, A. (2022). Phytoremediation: An alternative approach for removal of dyes. In Phytoremediation (pp. 369–386). Academic Press.

    Chapter  Google Scholar 

  • Gericke, M., & Pinches, A. (2006). Microbial production of gold nanoparticles. Gold Bulletin, 39(1), 22–28. https://doi.org/10.1007/BF03215529

    Article  CAS  Google Scholar 

  • Gholami-Shabani, M., Shams-Ghahfarokhi, M., Gholami-Shabani, Z., Akbarzadeh, A., Riazi, G., Ajdari, S., Amani, A., & Razzaghi-Abyaneh, M. (2015). Enzymatic synthesis of gold nanoparticles using sulfite reductase purified from Escherichia coli: A green eco-friendly approach. Process Biochemistry, 50(7), 1076–1085. https://doi.org/10.1016/j.procbio.2015.04.004

    Article  CAS  Google Scholar 

  • Gholami-Shabani, M., Gholami-Shabani, Z., Shams-Ghahfarokhi, M., & Razzaghi-Abyaneh, M. (2018). Application of nanotechnology in mycoremediation: Current status and future prospects. In Fungal nanobionics: Principles and applications (pp. 89–116). Springer.

    Chapter  Google Scholar 

  • Gong, P., Li, H., He, X., Wang, K., Hu, J., Tan, W., Zhang, S., & Yang, X. (2007). Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology, 18(28), 285604. https://doi.org/10.1088/0957-4484/18/28/285604

    Article  CAS  Google Scholar 

  • Gopinath, K., & Arumugam, A. (2014). Extracellular mycosynthesis of gold nanoparticles using Fusarium solani. Applied Nanoscience, 4, 657.

    Article  CAS  Google Scholar 

  • Gothandam, K. M., Ranjan, S., Dasgupta, N., Ramalingam, C., & Lichtfouse, E. (Eds.). (2018). Nanotechnology, food security and water treatment. Springer International Publishing.

    Google Scholar 

  • Granmayeh Rad, A., Abbasi, H., & Afzali, M. H. (2011). Gold nanoparticles: Synthesising, characterizing and reviewing novel application in recent years. Physics Procedia, 22, 203–208. https://doi.org/10.1016/j.phpro.2011.11.032

    Article  Google Scholar 

  • Guerra, F. D., Attia, M. F., Whitehead, D. C., & Alexis, F. (2018). Nanotechnology for environmental remediation: Materials and applications. Molecules, 23(7), 1760.

    Article  Google Scholar 

  • Guo, H., Yang, H., Huang, J., Tong, J., Liu, X., Wang, Y., et al. (2022). Theoretical and experimental insight into plasma-catalytic degradation of aqueous p-nitrophenol with graphene-ZnO nanoparticles. Separation and Purification Technology, 295, 121362.

    Article  CAS  Google Scholar 

  • Gupta, G. K., & Shukla, P. (2020). Insights into the resources generation from pulp and paper industry wastes: Challenges, perspectives and innovations. Bioresource Technology, 297, 122496.

    Article  Google Scholar 

  • Guzman, M., Dille, J., & Godet, S. (2012). Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine: Nanotechnology, Biology and Medicine, 8(1), 37–45. https://doi.org/10.1016/j.nano.2011.05.007

    Article  CAS  Google Scholar 

  • Hasan, S. (2015). A review on nanoparticles: Their synthesis and types. Research Journal of Recent Sciences, 2277, 2502.

    Google Scholar 

  • He, L., Liu, Y., Mustapha, A., & Lin, M. (2011). Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiological Research, 166(3), 207–215. https://doi.org/10.1016/j.micres.2010.03.003

    Article  CAS  Google Scholar 

  • Honary, S., Gharaei-Fathabad, E., Barabadi, H., & Naghibi, F. (2013). Fungus-mediated synthesis of gold nanoparticles: A novel biological approach to nanoparticle synthesis. Journal of Nanoscience and Nanotechnology, 13(2), 1427–1430. https://doi.org/10.1166/jnn.2013.5989

    Article  CAS  Google Scholar 

  • Hu, Y., Mortimer, P. E., Hyde, K. D., Kakumyan, P., & Thongklang, N. (2021). Mushroom cultivation for soil amendment and bioremediation. Circular Agricultural Systems, 1(1), 1–14.

    Article  Google Scholar 

  • Huang, C., & Huang, C. P. (1996). Application of Aspergillus oryzae and Rhizopus oryzae for Cu(II) removal. Water Research, 30(9), 1985–1990. https://doi.org/10.1016/0043-1354(96)00020-6

    Article  CAS  Google Scholar 

  • Hulkoti, N. I., & Taranath, T. C. (2014). Biosynthesis of nanoparticles using microbes—A review. Colloids and Surfaces B: Biointerfaces, 121, 474–483. https://doi.org/10.1016/j.colsurfb.2014.05.027

    Article  CAS  Google Scholar 

  • Husseiny, S. M., Salah, T. A., & Anter, H. A. (2015). Biosynthesis of size controlled silver nanoparticles by Fusarium oxysporum, their antibacterial and antitumor activities. Beni-Suef University Journal of Basic and Applied Sciences, 4, 225.

    Article  Google Scholar 

  • Huynh, K-H., Pham, X-H., Kim, J., Lee, S, H., Chang, H., Rho, W-Y., & Jun, B-H. (2020). Synthesis, properties, and biological applications of metallic alloy nanoparticles. IJMS, 21(14), 5174. https://doi.org/10.3390/ijms21145174

  • Incardona, J., Ylitalo, G., Myers, M., Scholz, N., Collier, T., Vines, C., et al. (2008). The 2007 Cosco Busan oil spill: Assessing toxic injury to Pacific herring embryos and larvae in the San Francisco estuary. Draft Report, NOAA Fisheries, Northwest Fisheries Science Center, Seattle, WA, USA.

    Google Scholar 

  • Ingle, A., Gade, A., Pierrat, S., Sonnichsen, C., & Rai, M. (2008). Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Current Nanoscience, 4, 141.

    Article  CAS  Google Scholar 

  • Ingle, A., Rai, M., Gade, A., & Bawaskar, M. (2009). Fusarium solani: A novel biological agent for the extracellular synthesis of silver nanoparticles. Journal of Nanoparticle Research, 11, 2079.

    Article  CAS  Google Scholar 

  • Islam, F., Shohag, S., Uddin, M. J., Islam, M. R., Nafady, M. H., Akter, A., et al. (2022). Exploring the journey of zinc oxide nanoparticles (ZnO-NPs) toward biomedical applications. Materials, 15(6), 2160.

    Article  CAS  Google Scholar 

  • Jackson, C. R., Tyler, H. L., & Millar, J. J. (2013). Determination of microbial extracellular enzyme activity in waters, soils, and sediments using high throughput microplate assays. Journal of Visualized Experiments, 80, 50399. https://doi.org/10.3791/50399

    Article  CAS  Google Scholar 

  • Jadimurthy, R., Mayegowda, S. B., Nayak, S. C., Mohan, C. D., & Rangappa, K. S. (2022). Esca** mechanisms of ESKAPE pathogens from antibiotics and their targeting by natural compounds. Biotechnology Reports, 34, e00728. https://doi.org/10.1016/j.btre.2022.e00728

    Article  CAS  Google Scholar 

  • Jebapriya, G. R., & Gnanadoss, J. J. (2013). Bioremediation of textile dye using white rot fungi: A review. International Journal of Current Research and Review, 5(3), 1.

    Google Scholar 

  • Kannan, B., & Natarajan, S. (2011). Facile green synthesis of gold nanostructures by NADPH-dependent enzyme from the extract of Sclerotium rolfsii. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 380, 156.

    Article  Google Scholar 

  • Kapoor, R. T., Salvadori, M. R., Rafatullah, M., Siddiqui, M. R., Khan, M. A., & Alshareef, S. A. (2021). Exploration of microbial factories for synthesis of nanoparticles – A sustainable approach for bioremediation of environmental contaminants. Frontiers in Microbiology, 12, 658294. https://doi.org/10.3389/fmicb.2021.658294

    Article  Google Scholar 

  • Kathiresan, K., Manivannan, S., Nabeel, M., & Dhivya, B. (2009). Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids and Surfaces B: Biointerfaces, 71, 133.

    Article  CAS  Google Scholar 

  • Kaul, I., & Sharma, J. G. (2022). Nanotechnology for the bioremediation of organic and inorganic compounds in aquatic ecosystem/marine ecosystem. Journal of Applied Biology and Biotechnology, 10, 22–33. https://doi.org/10.7324/JABB.2022.100603

    Article  CAS  Google Scholar 

  • Kaushal, R. S., & Fulekar, M. H. (2022). Rhizo-nanoremediation: Overview on practices: Advances and perspective for the treatment of contaminants. International Journal of Frontiers in Biology and Pharmacy Research, 2, 16–28.

    Article  Google Scholar 

  • Ketin, S., Imamovic, M., Nikolic, D., & Biocanin, R. (2015). Technology for the remediation of soil. Bulgarian Journal of Agricultural Science, 21(5), 935–939.

    Google Scholar 

  • Khan, A. U., Malik, N., Khan, M., Cho, M. H., & Khan, M. M. (2018). Fungi-assisted silver nanoparticle synthesis and their applications. Bioprocess and Biosystems Engineering, 41(1), 1–20.

    Article  CAS  Google Scholar 

  • Khan, A., Roy, A., Bhasin, S., Emran, T. B., Khusro, A., Eftekhari, A., et al. (2022). Nanomaterials: An alternative source for biodegradation of toxic dyes. Food and Chemical Toxicology, 164, 112996.

    Article  CAS  Google Scholar 

  • Klaus, T., Joerger, R., Olsson, E., & Granqvist, C.-G. (1999). Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences of the USA, 96(24), 13611–13614. https://doi.org/10.1073/pnas.96.24.13611

    Article  CAS  Google Scholar 

  • Kokkoris, V., Massas, I., Polemis, E., Koutrotsios, G., & Zervakis, G. I. (2019). Accumulation of heavy metals by wild edible mushrooms with respect to soil substrates in the Athens metropolitan area (Greece). Science of the Total Environment, 685, 280–296. https://doi.org/10.1016/j.scitotenv.2019.05.447

    Article  CAS  Google Scholar 

  • Koshila Ravi, R., Anusuya, S., Balachandar, M., & Muthukumar, T. (2019). Microbial interactions in soil formation and nutrient cycling. In A. Varma & D. K. Choudhary (Eds.), Mycorrhizosphere and pedogenesis (pp. 363–382). Springer.

    Chapter  Google Scholar 

  • Krumov, N., Oder, S., Perner-Nochta, I., Angelov, A., & Posten, C. (2007). Accumulation of CdS nanoparticles by yeasts in a fed-batch bioprocess. Journal of Biotechnology, 132(4), 481–486. https://doi.org/10.1016/j.jbiotec.2007.08.016

    Article  CAS  Google Scholar 

  • Kumar, S. A., Peter, Y. A., & Nadeau, J. L. (2008). Facile biosynthesis, separation and conjugation of gold nanoparticles to doxorubicin. Nanotechnology, 19(49), 495101.

    Article  Google Scholar 

  • Lansdown, A. B. G. (2006). Silver in health care: Antimicrobial effects and safety in use. In U.-C. Hipler & P. Elsner (Eds.), Current problems in dermatology (pp. 17–34). Karger.

    Google Scholar 

  • Li, X., Xu, H., Chen, Z. S., & Chen, G. (2011). Biosynthesis of nanoparticles by microorganisms and their applications. Journal of Nanomaterials, 2011, 270974.

    Article  Google Scholar 

  • Li, G., He, D., Qian, Y., Guan, B., Gao, S., Cui, Y., Yokoyama, K., & Wang, L. (2012). Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. International Journal of Molecular Sciences, 13, 466.

    Article  CAS  Google Scholar 

  • Li, Q., Liu, F., Li, M., Chen, C., & Gadd, G. M. (2022). Nanoparticle and nanomineral production by fungi. Fungal Biology Reviews, 41, 31–44. https://doi.org/10.1016/j.fbr.2021.07.003

    Article  CAS  Google Scholar 

  • Mahanty, S., Chatterjee, S., Ghosh, S., Tudu, P., Gaine, T., Bakshi, M., Das, S., Das, P., Bhattacharyya, S., Bandyopadhyay, S., & Chaudhuri, P. (2020). Synergistic approach towards the sustainable management of heavy metals in wastewater using mycosynthesized iron oxide nanoparticles: Biofabrication, adsorptive dynamics and chemometric modeling study. Journal of Water Process Engineering, 37, 101426. https://doi.org/10.1016/j.jwpe.2020.101426

    Article  Google Scholar 

  • Mahendra, R., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27(1), 76–83.

    Article  Google Scholar 

  • Mallikarjunaiah, S., Pattabhiramaiah, M., & Metikurki, B. (2020). Application of nanotechnology in the bioremediation of heavy metals and wastewater management. In D. Thangadurai, J. Sangeetha, & R. Prasad (Eds.), Nanotechnology for food, agriculture, and environment (pp. 297–321). Springer International Publishing.

    Chapter  Google Scholar 

  • Manjula, N. G., Sarma, G., Shilpa, B. M., & Suresh Kumar, K. (2022). Environmental applications of green engineered copper nanoparticles. In M. P. Shah & A. Roy (Eds.), Phytonanotechnology (pp. 255–276). Springer.

    Chapter  Google Scholar 

  • Mayegowda, S. B., Ng, M., Alghamdi, S., Atwah, B., Alhindi, Z., & Islam, F. (2022a). Role of antimicrobial drug in the development of potential therapeutics. Evidence-Based Complementary and Alternative Medicine, 2022, 1–17. https://doi.org/10.1155/2022/2500613

    Article  Google Scholar 

  • Mayegowda, S. B., Sureshkumar, K., Yashaswini, R., & Ramakrishnappa, T. (2022b). Phytonanotechnology for the removal of pollutants from the contaminated soil environment. In M. P. Shah & A. Roy (Eds.), Phytonanotechnology (pp. 319–336). Springer.

    Chapter  Google Scholar 

  • Michael, A., Singh, A., Roy, A., & Islam, M. (2022). Fungal-and algal-derived synthesis of various nanoparticles and their applications. Bioinorganic Chemistry and Applications, 2022, 3142674.

    Article  Google Scholar 

  • Mishra, A. N., Bhadauria, S., Gaur, M. S., & Pasricha, R. (2010). Extracellular microbial synthesis of gold nanoparticles using fungus Hormoconis resinae. Journal of the Minerals, 62, 45–48.

    CAS  Google Scholar 

  • Mishra, A., Tripathy, S. K., Wahab, R., Jeong, S.-H., Hwang, I., Yang, Y.-B., Kim, Y.-S., Shin, H.-S., & Yun, S.-I. (2011). Microbial synthesis of gold nanoparticles using the fungus Penicillium brevicompactum and their cytotoxic effects against mouse mayo blast cancer C2C12 cells. Applied Microbiology and Biotechnology, 92(3), 617–630. https://doi.org/10.1007/s00253-011-3556-0

    Article  CAS  Google Scholar 

  • Mishra, A., Kumari, M., Pandey, S., Chaudhry, V., Gupta, K. C., & Nautiyal, C. S. (2014). Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp. Bioresource Technology, 166, 235–242. https://doi.org/10.1016/j.biortech.2014.04.085

    Article  CAS  Google Scholar 

  • Mittal, S., & Roy, A. (2021). Fungus and plant-mediated synthesis of metallic nanoparticles and their application in degradation of dyes. In Photocatalytic degradation of dyes (pp. 287–308). Elsevier.

    Chapter  Google Scholar 

  • Mohl, M., Dobo, D., Kukovecz, A., Konya, Z., Kordas, K., Wei, J., Vajtai, R., & Ajayan, P. M. (2011). Formation of CuPd and CuPt bimetallic nanotubes by galvanic replacement reaction. Journal of Physical Chemistry C, 115(19), 9403–9409. https://doi.org/10.1021/jp112128g

    Article  CAS  Google Scholar 

  • Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S. R., Khan, M. I., Parishcha, R., Ajaykumar, P. V., Alam, M., Kumar, R., & Sastry, M. (2001a). Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Letters, 1(10), 515–519. https://doi.org/10.1021/nl0155274

    Article  CAS  Google Scholar 

  • Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S. R., Khan, M. I., Ramani, R., Parischa, R., Ajayakumar, P. V., Alam, M., Sastry, M., & Kumar, R. (2001b). Bioreduction of AuCl4 ions by the fungus, Verticillium sp. and surface trap** of the gold nanoparticles formed D.M. and S.S. thank the Council of Scientific and Industrial Research (CSIR), Government of India, for financial assistance. Angewandte Chemie International Edition, 40(19), 3585. https://doi.org/10.1002/1521-3773(20011001)40:19<3585::AID-ANIE3585>3.0.CO;2-K

    Article  CAS  Google Scholar 

  • Mukherjee, P., Roy, M., Mandal, B. P., Dey, G. K., Mukherjee, P. K., Ghatak, J., Tyagi, A. K., & Kale, S. P. (2008). Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology, 19, 1.

    Article  Google Scholar 

  • Nagore, P., Ghotekar, S., Mane, K., Ghoti, A., Bilal, M., & Roy, A. (2021). Structural properties and antimicrobial activities of Polyalthia longifolia leaf extract-mediated CuO nanoparticles. BioNanoScience, 11, 579–589.

    Article  Google Scholar 

  • Narayanan, K. B., & Sakthivel, N. (2010). Biological synthesis of metal nanoparticles by microbes. Advances in Colloid and Interface Science, 156(1–2), 1–13. https://doi.org/10.1016/j.cis.2010.02.001

    Article  CAS  Google Scholar 

  • Narayanan, K. B., Park, H. H., & Sakthivel, N. (2013). Extracellular synthesis of mycogenic silver nanoparticles by Cylindrocladium floridanum and its homogeneous catalytic degradation of 4-nitrophenol. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 116, 485–490. https://doi.org/10.1016/j.saa.2013.07.066

    Article  CAS  Google Scholar 

  • Noman, M., Shahid, M., Ahmed, T., Niazi, M. B. K., Hussain, S., Song, F., & Manzoor, I. (2020). Use of biogenic copper nanoparticles synthesized from a native Escherichia sp. as photocatalysts for azo dye degradation and treatment of textile effluents. Environmental Pollution, 257, 113514. https://doi.org/10.1016/j.envpol.2019.113514

    Article  CAS  Google Scholar 

  • Oksanen, T., Pere, J., Paavilainen, L., Buchert, J., & Viikari, L. (2000). Treatment of recycled kraft pulps with Trichoderma reesei hemicellulases and cellulases. Journal of Biotechnology, 78(1), 39–48. https://doi.org/10.1016/S0168-1656(99)00232-1

    Article  CAS  Google Scholar 

  • Owaid, M. N. (2019). Green synthesis of silver nanoparticles by Pleurotus (oyster mushroom) and their bioactivity: Review. Environmental Nanotechnology, Monitoring & Management, 12, 100256. https://doi.org/10.1016/j.enmm.2019.100256

    Article  Google Scholar 

  • Owaid, M. N., & Ibraheem, I. J. (2017). Mycosynthesis of nanoparticles using edible and medicinal mushrooms. European Journal of Nanomedicine, 9(1), 5–23. https://doi.org/10.1515/ejnm-2016-0016

    Article  CAS  Google Scholar 

  • Pandey, G. (2018). Prospects of nanobioremediation in environmental cleanup. Oriental Journal of Chemistry, 34(6), 2838–2850.

    Article  Google Scholar 

  • Pandit, C., Roy, A., Ghotekar, S., Khusro, A., Islam, M. N., Emran, T. B., et al. (2022). Biological agents for synthesis of nanoparticles and their applications. Journal of King Saud University-Science, 34, 101869.

    Article  Google Scholar 

  • Pansambal, S., Roy, A., Mohamed, H. E. A., Oza, R., Vu, C. M., Marzban, A., et al. (2022). Recent developments on magnetically separable ferrite-based nanomaterials for removal of environmental pollutants. Journal of Nanomaterials, 2022, 8560069.

    Article  Google Scholar 

  • Patil, S. S., Shedbalkar, U. U., Truskewycz, A., Chopade, B. A., & Ball, A. S. (2016). Nanoparticles for environmental clean-up: A review of potential risks and emerging solutions. Environmental Technology & Innovation, 5, 10–21.

    Article  Google Scholar 

  • Priyadarshini, E., Pradhan, N., Sukla, L. B., & Panda, P. K. (2014). Controlled synthesis of gold nanoparticles using Aspergillus terreus IFo and its antibacterial potential against gram negative pathogenic bacteria. Journal of Nanotechnology, 2014, 653198.

    Article  Google Scholar 

  • Rahman, R. A., Molla, A. H., & Fakhru’l-Razi, A. (2014). Assessment of sewage sludge bioremediation at different hydraulic retention times using mixed fungal inoculation by liquid-state bioconversion. Environmental Science and Pollution Research, 21(2), 1178–1187. https://doi.org/10.1007/s11356-013-1974-5

    Article  CAS  Google Scholar 

  • Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27(1), 76–83. https://doi.org/10.1016/j.biotechadv.2008.09.002

    Article  CAS  Google Scholar 

  • Raina, S., Roy, A., & Bharadvaja, N. (2020). Degradation of dyes using biologically synthesized silver and copper nanoparticles. Environmental Nanotechnology, Monitoring & Management, 13, 100278.

    Article  Google Scholar 

  • Rajan, C. S. (2011). Nanotechnology in groundwater remediation. International Journal of Environmental Science and Development, 2(3), 182.

    Article  Google Scholar 

  • Riddin, T. L., Govender, Y., Gericke, M., & Whiteley, C. G. (2009). Two different hydrogenase enzymes from sulphate-reducing bacteria are responsible for the bioreductive mechanism of platinum into nanoparticles. Enzyme and Microbial Technology, 45(4), 267–273. https://doi.org/10.1016/j.enzmictec.2009.06.006

    Article  CAS  Google Scholar 

  • Rotti, R. B., Sunitha, D. V., Manjunath, R., Roy, A., Mayegowda, S. B., Gnanaprakash, A. P., et al. (2023). Green synthesis of MgO nanoparticles and its antibacterial properties. Frontiers in Chemistry, 11, 1143614. https://doi.org/10.3389/fchem.2023.1143614

  • Roy, A. (2021). Plant derived silver nanoparticles and their therapeutic applications. Current Pharmaceutical Biotechnology, 22(14), 1834–1847.

    CAS  Google Scholar 

  • Roy, A., & Bharadvaja, N. (2017). Qualitative analysis of phytocompounds and synthesis of silver nanoparticles from Centella asiatica. Innovative Techniques in Agriculture, 1(2), 88–95.

    Google Scholar 

  • Roy, A., & Bharadvaja, N. (2019). Silver nanoparticle synthesis from Plumbago zeylanica and its dye degradation activity. Bioinspired, Biomimetic and Nanobiomaterials, 8(2), 130–140.

    Article  Google Scholar 

  • Roy, A., & Bharadvaja, N. (2021). Efficient removal of heavy metals from artificial wastewater using biochar. Environmental Nanotechnology, Monitoring & Management, 16, 100602.

    Article  CAS  Google Scholar 

  • Roy, A., Murthy, H. A., Ahmed, H. M., Islam, M. N., & Prasad, R. (2021a). Phytogenic synthesis of metal/metal oxide nanoparticles for degradation of dyes. Journal of Renewable Materials, 10(5), 1–20. https://doi.org/10.32604/jrm.2022.019410

    Article  CAS  Google Scholar 

  • Roy, A., Elzaki, A., Tirth, V., Kajoak, S., Osman, H., Algahtani, A., et al. (2021b). Biological synthesis of nanocatalysts and their applications. Catalysts, 11(12), 1494.

    Article  CAS  Google Scholar 

  • Roy, A., Sharma, A., Yadav, S., Jule, L. T., & Krishnaraj, R. (2021c). Nanomaterials for remediation of environmental pollutants. Bioinorganic Chemistry and Applications, 2021, 1764647.

    Article  Google Scholar 

  • Roy, A., Pandit, C., Gacem, A., Alqahtani, M. S., Bilal, M., Islam, S., et al. (2022a). Biologically derived gold nanoparticles and their applications. Bioinorganic Chemistry and Applications, 2022, 8184217.

    Article  Google Scholar 

  • Roy, A., Roy, M., Alghamdi, S., Dablool, A. S., Almakki, A. A., Ali, I. H., et al. (2022b). Role of microbes and nanomaterials in the removal of pesticides from wastewater. International Journal of Photoenergy, 2022, 2131583.

    Article  Google Scholar 

  • Roy, A., Singh, V., Sharma, S., Ali, D., Azad, A. K., Kumar, G., & Emran, T. B. (2022c). Antibacterial and dye degradation activity of green synthesized iron nanoparticles. Journal of Nanomaterials, 2022, 3636481.

    Article  Google Scholar 

  • Saha, S., Sarkar, J., Chattopadhyay, D., Patra, S., Chakraborty, A., & Acharya, K. (2010). Production of silver nanoparticles by a phytopathogenic fungus Bipolaris nodulosa and its antimicrobial activity. Digest Journal of Nanomaterials and Biostructures, 5(4), 887–895.

    Google Scholar 

  • Saifuddin, N., Wong, C. W., & Yasumira, A. A. N. (2009). Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. E-Journal of Chemistry, 6(1), 61–70. https://doi.org/10.1155/2009/734264

    Article  CAS  Google Scholar 

  • Salve, P., Vinchurkar, A., Raut, R., Chondekar, R., Lakkakula, J., Roy, A., et al. (2022). An evaluation of antimicrobial, anticancer, anti-inflammatory and antioxidant activities of silver nanoparticles synthesized from leaf extract of Madhuca longifolia utilizing quantitative and qualitative methods. Molecules, 27(19), 6404.

    Article  CAS  Google Scholar 

  • Sanghi, R., & Verma, P. (2010). pH dependent fungal proteins in the “green” synthesis of gold nanoparticles. Advanced Materials Letters, 1, 193.

    Article  Google Scholar 

  • Sanghi, R., Verma, P., & Puri, S. (2011). Enzymatic formation of gold nanoparticles using Phanerochaete chrysosporium. Advances in Chemical Engineering and Science, 1(3), 154–162. https://doi.org/10.4236/aces.2011.13023

    Article  CAS  Google Scholar 

  • Saravanan, M., & Nanda, A. (2010). Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE. Colloids and Surfaces B: Biointerfaces, 77(2), 214–218. https://doi.org/10.1016/j.colsurfb.2010.01.026

    Article  CAS  Google Scholar 

  • Sardul, S. S., Harshita, S., & Shyamji, S. (2017). Biosynthesis of silver nanoparticles by endophytic fungi: Its mechanism, characterization techniques and antimicrobial potential. African Journal of Biotechnology, 16(14), 683–698. https://doi.org/10.5897/AJB2017.15873

    Article  Google Scholar 

  • Sastry, M., Ahmad, A., Islam Khan, M., & Kumar, R. (2003). Biosynthesis of metal nanoparticles using fungi and actinomycete. Current Science, 85(2), 162–170.

    CAS  Google Scholar 

  • Seshadri, S., Saranya, K., & Kowshik, M. (2011). Green synthesis of lead sulfide nanoparticles by the lead resistant marine yeast, Rhodosporidium diobovatum. Biotechnology Progress, 27(5), 1464–1469. https://doi.org/10.1002/btpr.651

    Article  CAS  Google Scholar 

  • Shahi, N., Wang, P., Adhikari, S., Min, B., & Rangari, V. K. (2021). Biopolymers fractionation and synthesis of nanocellulose/silica nanoparticles from agricultural byproducts. ACS Sustainable Chemistry & Engineering, 9(18), 6284–6295.

    Article  CAS  Google Scholar 

  • Shaligram, N. S., Bule, M., Bhambure, R., Singhal, R. S., Singh, S. K., Szakacs, G., & Pandey, A. (2009). Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochemistry, 44, 939.

    Article  CAS  Google Scholar 

  • Sharma, V. K., Yngard, R. A., & Lin, Y. (2009). Silver nanoparticles: Green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science, 145(1–2), 83–96. https://doi.org/10.1016/j.cis.2008.09.002

    Article  CAS  Google Scholar 

  • Sheikhloo, Z., Salouti, M., & Katiraee, F. (2011). Biological synthesis of gold nanoparticles by fungus Epicoccum nigrum. Journal of Cluster Science, 22(4), 661–665. https://doi.org/10.1007/s10876-011-0412-4

    Article  CAS  Google Scholar 

  • Shilpa, B. M., Rashmi, R., Manjula, N. G., & Sreekantha, A. (2022). Bioremediation of heavy metal contaminated sites using phytogenic nanoparticles. In M. P. Shah & A. Roy (Eds.), Phytonanotechnology (pp. 227–253). Springer.

    Chapter  Google Scholar 

  • Siddiqi, K. S., & Husen, A. (2018). Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Research Letters, 13(1), 1–13.

    Article  Google Scholar 

  • Silvestry-Rodriguez, N., Sicairos-Ruelas, E. E., Gerba, C. P., & Bright, K. R. (2007). Silver as a disinfectant. In Reviews of environmental contamination and toxicology (pp. 23–45). Springer.

    Chapter  Google Scholar 

  • Singh, O. V. (Ed.). (2015). Bio-nanoparticles: Biosynthesis and sustainable biotechnological implications. Wiley.

    Google Scholar 

  • Singh, M., Srivastava, M., Kumar, A., & Pandey, K. D. (2019). Biosynthesis of nanoparticles and applications in agriculture. In Role of plant growth promoting microorganisms in sustainable agriculture and nanotechnology (pp. 199–217). Woodhead Publishing.

    Chapter  Google Scholar 

  • Sintubin, L., De Windt, W., Dick, J., Mast, J., van der Ha, D., Verstraete, W., & Boon, N. (2009). Lactic acid bacteria as reducing and cap** agent for the fast and efficient production of silver nanoparticles. Applied Microbiology and Biotechnology, 84(4), 741–749. https://doi.org/10.1007/s00253-009-2032-6

    Article  CAS  Google Scholar 

  • Sintubin, L., Verstraete, W., & Boon, N. (2012). Biologically produced nanosilver: Current state and future perspectives. Biotechnology and Bioengineering, 109(10), 2422–2436. https://doi.org/10.1002/bit.24570

    Article  CAS  Google Scholar 

  • Soni, N., & Prakash, S. (2012). Synthesis of gold nanoparticles by the fungus Aspergillus niger and its efficacy against mosquito larvae. Reports in Parasitology, 2, 1.

    Google Scholar 

  • Sparks, D. L., Page, A. L., Helmke, P. A., & Loeppert, R. H. (Eds.). (2020). Methods of soil analysis, part 3: Chemical methods (Vol. 14). Wiley.

    Google Scholar 

  • Taifa, S., Muhee, A., Bhat, R. A., Nabi, S. U., Roy, A., Rather, G. A., et al. (2022). Evaluation of therapeutic efficacy of copper nanoparticles in Staphylococcus aureus-induced rat mastitis model. Journal of Nanomaterials, 2022, 7124114.

    Article  Google Scholar 

  • Tan, Y., Wang, J., He, Y., Yu, X., Chen, S., Penttinen, P., Liu, S., Yang, Y., Zhao, K., & Zou, L. (2022). Organic fertilizers shape soil microbial communities and increase soil amino acid metabolites content in a blueberry orchard. Microbial Ecology, 85, 232–246. https://doi.org/10.1007/s00248-022-01960-7

    Article  CAS  Google Scholar 

  • Theng, B. K. G., & Yuan, G. (2008). Nanoparticles in the soil environment. Elements, 4(6), 395–399. https://doi.org/10.2113/gselements.4.6.395

    Article  CAS  Google Scholar 

  • Tian, D., Cheng, X., Wang, L., Hu, J., Zhou, N., **a, J., et al. (2022). Remediation of lead-contaminated water by red yeast and different types of phosphate. Frontiers in Bioengineering and Biotechnology, 10, 775058.

    Article  Google Scholar 

  • Tomar, A., & Garg, G. (2013). Short review on application of gold nanoparticles. Global Journal of Pharmacology, 7(1), 34–38. https://doi.org/10.5829/idosi.gjp.2013.7.1.66173

    Article  CAS  Google Scholar 

  • Tungittiplakorn, W., Cohen, C., & Lion, L. W. (2005). Engineered polymeric nanoparticles for bioremediation of hydrophobic contaminants. Environmental Science & Technology, 39(5), 1354–1358. https://doi.org/10.1021/es049031a

    Article  CAS  Google Scholar 

  • Usha, R., Prabu, E., Palaniswamy, M., Venil, C. K., & Rajendran, R. (2010). Synthesis of metal oxide nano particles by Streptomyces sp for development of antimicrobial textiles. Global Journal of Biotechnology & Biochemistry, 5, 153.

    CAS  Google Scholar 

  • Vahabi, K., Mansoori, G. A., & Karimi, S. (2011). Biosynthesis of silver nanoparticles by fungus Trichoderma reesei (a route for large-scale production of AgNPs). Insciences Journal, 1, 65–79. https://doi.org/10.5640/insc.010165

    Article  CAS  Google Scholar 

  • Verma, V. C., Kharwar, R. N., & Gange, A. C. (2010). Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine, 5, 33.

    Article  CAS  Google Scholar 

  • Verma, A., Roy, A., & Bharadvaja, N. (2020). Remediation of heavy metals using nanophytoremediation. In Advanced oxidation processes for effluent treatment plants (pp. 273–296). Elsevier.

    Google Scholar 

  • Vigneshwaran, N., Nachane, R. P., Balasubramanya, R. H., & Varadarajan, P. V. (2006). A novel one-pot “green” synthesis of stable silver nanoparticles using soluble starch. Carbohydrate Research, 341(12), 2012–2018. https://doi.org/10.1016/j.carres.2006.04.042

    Article  CAS  Google Scholar 

  • Volesky, B., & Holan, Z. R. (1995). Biosorption of heavy metals. Biotechnology Progress, 11(3), 235–250. https://doi.org/10.1021/bp00033a001

    Article  CAS  Google Scholar 

  • Wei, R., & Zimmermann, W. (2017). Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: How far are we? Microbial Biotechnology, 10(6), 1308–1322. https://doi.org/10.1111/1751-7915.12710

    Article  CAS  Google Scholar 

  • Yadav, A., Verma, A., & Yadav, K. (2016). Fungal nanoparticles: An emerging tool in medical biology. In Advances and applications through fungal nanobiotechnology (pp. 213–240). Springer.

    Chapter  Google Scholar 

  • Yadav, L. S. R., Shilpa, B. M., Suma, B. P., Venkatesh, R., & Nagaraju, G. (2021). Synergistic effect of photocatalytic, antibacterial and electrochemical activities on biosynthesized zirconium oxide nanoparticles. European Physical Journal – Plus, 136(7), 764. https://doi.org/10.1140/epjp/s13360-021-01606-6

    Article  CAS  Google Scholar 

  • Yadav, V. K., Gnanamoorthy, G., Ali, D., Bera, S. P., Roy, A., Kumar, G., et al. (2022). Cytotoxicity, removal of Congo red dye in aqueous solution using synthesized amorphous iron oxide nanoparticles from incense sticks ash waste. Journal of Nanomaterials, 2022, 5949595.

    Article  Google Scholar 

  • Yan, G., & Viraraghavan, T. (2003). Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Research, 37(18), 4486–4496. https://doi.org/10.1016/S0043-1354(03)00409-3

    Article  CAS  Google Scholar 

  • Yaqoob, A. A., Parveen, T., Umar, K., & Mohamad Ibrahim, M. N. (2020). Role of nanomaterials in the treatment of wastewater: A review. Water, 12(2), 495. https://doi.org/10.3390/w12020495

    Article  CAS  Google Scholar 

  • Zamani K. M. R., & Stadler, B. J. H. (2020). A guideline for effectively synthesizing and characterizing magnetic nanoparticles for advancing nanobiotechnology: A review. Sensors, 20(9), 2554. https://doi.org/10.3390/s20092554

  • Zhang, X.-F., Liu, Z.-G., Shen, W., & Gurunathan, S. (2016). Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. International Journal of Molecular Sciences, 17(9), 1534. https://doi.org/10.3390/ijms17091534

    Article  CAS  Google Scholar 

  • Zielonka, A., & Klimek-Ochab, M. (2017). Fungal synthesis of size-defined nanoparticles. Advances in Natural Sciences: Nanoscience and Nanotechnology, 8(4), 043001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilpa Borehalli Mayegowda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manjula, N.G., Tajunnisa, Mamani, V., Meghana, C.A., Mayegowda, S.B. (2023). Fungal-Based Synthesis to Generate Nanoparticles for Nanobioremediation. In: Policarpo Tonelli, F.M., Roy, A., Ananda Murthy, H.C. (eds) Green Nanoremediation. Springer, Cham. https://doi.org/10.1007/978-3-031-30558-0_4

Download citation

Publish with us

Policies and ethics

Navigation