Green Iron Nanoparticles for Nanoremediation

  • Chapter
  • First Online:
Green Nanoremediation

Abstract

Environmental pollution threatens life on Earth. Inorganic and organic chemicals can negatively impact living beings’ health as same as biological contaminants can. Some of them can persist for long periods of time in an ecosystem and can also enter food chains, causing extensive damage. It is necessary to develop ecofriendly solutions to deal with these pollutants in an efficient way, aiming to achieve balance and more-sustainable development. The nanotechnology field can offer green synthesized iron nanoparticles as interesting tools to perform nanoremediation due to their large surface area, high reactivity, low cost, and potential magnetic property. This chapter is dedicated to reviewing green iron nanoparticles as nanoremediators generated by using fungi, plants, algae, and bacteria and to exploring both their potential and future perspectives for the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adeel, M., Song, X., Wang, Y., Francis, D., & Yang, Y. (2017). Environmental impact of estrogens on human, animal and plant life: A critical review. Environment International, 99, 107–119. https://doi.org/10.1016/j.envint.2016.12.010

  • Ali, I., Al-Othman, Z. A., & Alwarthan, A. (2016). Synthesis of composite iron nano adsorbent and removal of ibuprofen drug residue from water. Journal of Molecular Liquids, 219, 858–864.

    Article  CAS  Google Scholar 

  • AlNadhari, S., Al-Enazi, N. M., Alshehrei, F., & Ameen, F. (2021). A review on biogenic synthesis of metal nanoparticles using marine algae and its applications. Environmental Research, 194, 110672.

    Article  CAS  Google Scholar 

  • Alnashiri, H. M. (2022). A brief review on heavy metal bioaccumulation studies from red sea. Adsorption Science & Technology, 2022, 1–8.

    Google Scholar 

  • Anyanwu, N. G., Stanley, H. O., Okpokwasili, G. C., & Akaranta, O. (2021). Biogenic nanoparticles and their environmental applications in bioremediation and pollution control. International Journal of Innovative Science and Research Technology, 6, 113–121.

    Google Scholar 

  • Arjaghi, S. K., Alasl, M. K., Sajjadi, N., Fataei, E., & Rajaei, G. E. (2020). Green synthesis of iron oxide nanoparticles by RS Lichen extract and its application in removing heavy metals of lead and cadmium. Biological Trace Element Research, 199, 1–6.

    Google Scholar 

  • Avudainayagam, S., Megharaj, M., Owens, G., Kookana, R. S., Chittleborough, D., & Naidu, R. (2003). Chemistry of chromium in soils with emphasis on tannery waste sites. Reviews of Environmental Contamination and Toxicology, 178, 53–91.

    CAS  Google Scholar 

  • Aziz, H., Wang, X., Murtaza, G., Ashar, A., Hussain, S., Abid, M., Murtaza, B., Saleem, M. H., Fiaz, S., & Ali, S. (2021). Evaluation of compost and biochar to mitigate chlorpyrifos pollution in soil and their effect on soil enzyme dynamics. Sustainability, 13(17), 9695.

    Article  CAS  Google Scholar 

  • Baragano, D., Alonso, J., Gallego, J. R., Lobo, M. C., & Gil-Diaz, M. (2020). Zero valent iron and goethite nanoparticles as new promising remediation techniques for As-polluted soils. Chemosphere, 238, 124624.

    Article  CAS  Google Scholar 

  • Baumgartner, J., Menguy, N., Gonzalez, T. P., Morin, G., Widdrat, M., & Faivre, D. (2016). Elongated magnetite nanoparticle formation from a solid ferrous precursor in a magnetotactic bacterium. Journal of the Royal Society Interface, 13(124), 27881802.

    Article  Google Scholar 

  • Bianco, K., Albano, R. M., de Oliveira, S. S., Nascimento, A. P. A., dos Santos, T., & Clementino, M. M. (2020). Possible health impacts due to animal and human fecal pollution in water intended for drinking water supply of Rio de Janeiro, Brazil. Journal of Water Supply: Research and Technology—AQUA, 69(1), 70–84.

    Article  Google Scholar 

  • Bolade, O. P., Williams, A. B., & Benson, N. U. (2019). Green synthesis of iron-based nanomaterials for environmental remediation: A review. Environmental Nanotechnology, Monitoring & Management, 13, 100279.

    Article  Google Scholar 

  • Boulkhessaim, S., Gacem, A., Khan, S. H., Amari, A., Yadav, V. K., Harharah, H. N., Elkhaleefa, A. M., Yadav, K. K., Rather, S. U., Ahn, H. J., & Jeon, B. H. (2022). Emerging trends in the remediation of persistent organic pollutants using nanomaterials and related processes: A review. Nanomaterials, 12, 2148.

    Article  CAS  Google Scholar 

  • Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691.

    Article  CAS  Google Scholar 

  • Chatterjee, S., Mahanty, S., Das, P., Chaudhuri, P., & Das, S. (2020). Biofabrication of iron oxide nanoparticles using manglicolous fungus Aspergillus niger BSC-1 and removal of Cr(VI) from aqueous solution. Chemical Engineering Journal, 385, 123790.

    Article  CAS  Google Scholar 

  • Chen, Y., Liang, W., Li, Y., Wu, Y., Chen, Y., **ao, W., Zhao, L., Zhang, J., & Li, H. (2019). Modification, application and reaction mechanisms of nano-sized iron sulfide particles for pollutant removal from soil and water: A review. Chemical Engineering Journal, 362, 144–159.

    Article  CAS  Google Scholar 

  • Cortizas, A. M., López-Merino, L., Bindler, R., Mighall, T., & Kylander, M. E. (2016). Early atmospheric metal pollution provides evidence for Chalcolithic/Bronze Age mining and metallurgy in Southwestern Europe. Science of the Total Environment, 545–546, 398–406.

    Article  Google Scholar 

  • Da’na, E., Taha, A., & Hassanin, H. A. (2022). Green fabrication of iron nanoparticles decorated with amine functionality for the remediation of lead ions from aqueous solutions. Surfaces and Interfaces, 30, 101909.

    Article  Google Scholar 

  • Daneshvar, M., & Hosseini, M. R. (2018). From the iron boring scraps to superparamagnetic nanoparticles through an aerobic biological route. Journal of Hazardous Materials, 357, 393–400.

    Article  CAS  Google Scholar 

  • Darwesh, O., Shalapy, M., Abo-Zeid, A., & Mahmoud, Y. (2021). Nano-bioremediation of municipal wastewater using myco-synthesized iron nanoparticles. Egyptian Journal of Chemistry, 64(5), 2499–2507.

    Google Scholar 

  • De Oliveira, P. M. F., Timsina, B., & Piercey-Normore, M. D. (2012). Diversity of Ramalina sinensis and its photobiont in local populations. The Lichenologist, 44(5), 649–660.

    Article  Google Scholar 

  • Delahoy, M. J., Wodnik, B., McAliley, L., Penakalapati, G., Swarthout, J., Freeman, M. C., & Levy, K. (2018). Pathogens transmitted in animal feces in low- and middle-income countries. International Journal of Hygiene and Environmental Health, 221(4), 661–676.

    Article  Google Scholar 

  • El-Sheekh, M. M., Hassan, L. H. S., & Morsi, H. H. (2021). Evaluation of antimicrobial activities of blue-green algae-mediated silver and gold nanoparticles. Rendiconti Lincei. Scienze Fisiche e Naturali, 32, 747–759.

    Article  Google Scholar 

  • Fan, H., Ren, H., Ma, X., Zhou, S., Huang, J., Jiao, W., Qi, G., & Liu, Y. (2020). High-gravity continuous preparation of chitosan-stabilized nanoscale zero-valent iron towards Cr(VI) removal. Chemical Engineering Journal, 390, 124639.

    Article  CAS  Google Scholar 

  • Fu, D., Liu, J., Ren, Q., Ding, J., Ding, H., Chen, X., & Ge, X. (2019). Magnetic iron sulfide nanoparticles as thrombolytic agents for magnetocaloric therapy and photothermal therapy of thrombosis. Frontiers in Materials, 6, 316.

    Article  Google Scholar 

  • Garg, S., & Roy, A. (2022). Phytoremediation: An alternative approach for removal of dyes. In Phytoremediation (pp. 369–386). Academic Press.

    Chapter  Google Scholar 

  • Gil-Díaz, M., Rodríguez-Alonso, J., Maffiotte, C. A., Baragaño, D., Millán, R., & Lobo, M. C. (2021). Iron nanoparticles are efficient at removing mercury from polluted waters. Journal of Cleaner Production, 315, 128272.

    Article  Google Scholar 

  • Gomaa, E. Z. (2018). Iron nanoparticles α-chitin nanocomposite for enhanced antimicrobial, dyes degradation and heavy metals removal activities. Journal of Polymers and the Environment, 26, 3638–3654.

    Article  CAS  Google Scholar 

  • Gong, Y., Tang, J., & Zhao, D. (2016). Application of iron sulfide particles for groundwater and soil remediation: A review. Water Research, 89, 309–320.

    Article  CAS  Google Scholar 

  • Grimm, M., Grube, M., Schiefelbein, U., Zühlke, D., Bernhardt, J., & Riedel, K. (2021). The Lichens’ microbiota, still a mystery? Frontiers in Microbiology, 12, 623839.

    Article  Google Scholar 

  • Grover, A., Mohiuddin, I., Lee, J., Brown, R. J. C., Malik, A. K., Aulakh, J. S., & Kim, K. H. (2022). Progress in pre-treatment and extraction of organic and inorganic pollutants by layered double hydroxide for trace-level analysis. Environmental Research, 214(4), 114166.

    Article  CAS  Google Scholar 

  • Gu, N., Zhang, Z., & Li, Y. (2022). Adaptive iron-based magnetic nanomaterials of high performance for biomedical applications. Nano Research, 15(1), 1–17.

    Article  Google Scholar 

  • Gupta, N., Ram, H., & Kumar, B. (2016). Mechanism of zinc absorption in plants: Uptake, transport, translocation and accumulation. Reviews in Environmental Science and Bio/Technology, 15(1), 89–109.

    Article  CAS  Google Scholar 

  • Gurses, A., Guneş, K., & Şahin, E. (2021). Removal of dyes and pigments from industrial effluents. In S. K. Sharma (Ed.), Green chemistry and water remediation: Research and applications (pp. 135–187). Elsevier.

    Chapter  Google Scholar 

  • He, X. L., Song, C., Li, Y. Y., Wang, N., Xu, L., Han, X., & Wei, D. S. (2018). Efficient degradation of azo dyes by a newly isolated fungus Trichoderma tomentosum under non-sterile conditions. Ecotoxicology and Environmental Safety, 150, 232–239.

    Article  CAS  Google Scholar 

  • Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13(10), 2638–2650.

    Article  CAS  Google Scholar 

  • Jegadeesan, G., Srimathi, K., Santosh Srinivas, N., Manishkanna, S., & Vignesh, D. (2019). Green synthesis of iron oxide nanoparticles using Terminalia bellirica and Moringa oleifera fruit and leaf extracts: Antioxidant, antibacterial and thermoacoustic properties. Biocatalysis and Agricultural Biotechnology, 21, 101354. https://doi.org/10.1016/j.bcab.2019.101354

    Article  Google Scholar 

  • Karimi, P., Javanshir, S., Sayadi, M. H., & Arabyarmohammadi, H. (2019). Arsenic removal from mining effluents using plant-mediated, green-synthesized iron nanoparticles. Processes, 7(10), 759.

    Article  CAS  Google Scholar 

  • Karkman, A., Pärnänen, K., & Larsson, D. G. J. (2019). Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Nature Communications, 10, 80.

    Article  CAS  Google Scholar 

  • Katata-Seru, L., Moremedi, T., Aremu, O. S., & Bahadur, I. (2018). Green synthesis of iron nanoparticles using Moringa oleifera extracts and their applications: Removal of nitrate from water and antibacterial activity against Escherichia coli. Journal of Molecular Liquids, 256, 296–304.

    Article  CAS  Google Scholar 

  • Khan, A., Roy, A., Bhasin, S., Emran, T. B., Khusro, A., Eftekhari, A., et al. (2022). Nanomaterials: An alternative source for biodegradation of toxic dyes. Food and Chemical Toxicology, 164, 112996.

    Article  CAS  Google Scholar 

  • Konate, A., He, X., Zhang, Z., Ma, Y., Zhang, P., Alugongo, G., & Rui, Y. (2017). Magnetic (Fe3O4) nanoparticles reduce heavy metals uptake and mitigate their toxicity in wheat seedling. Sustainability, 9(5), 790.

    Article  Google Scholar 

  • Landrigan, P. J., Fuller, R., Fisher, S., Suk, W. A., Sly, P., & Chiles, T. C. (2019). Pollution and children’s health. Science of the Total Environment, 650(2), 2389–2394.

    Article  CAS  Google Scholar 

  • Lawal, A. T. (2017). Polycyclic aromatic hydrocarbons. A review. Cogent Environmental Science, 3(1), 89.

    Article  Google Scholar 

  • Łukowski, A., & Dec, D. (2018). Influence of Zn, Cd, and Cu fractions on enzymatic activity of arable soils. Environmental Monitoring and Assessment, 190(5), 278.

    Article  Google Scholar 

  • Machado, S., Pacheco, J. G., Nouws, H. P. A., Albergaria, J. T., & Delerue-Matos, C. (2015). Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts. Science of the Total Environment, 533, 76–81.

    Article  CAS  Google Scholar 

  • Mahanty, S., Bakshi, M., Ghosh, S., Gaine, T., Chatterjee, S., Bhattacharyya, S., Das, S., Das, P., & Chaudhuri, P. (2019). Mycosynthesis of iron oxide nanoparticles using manglicolous fungi isolated from Indian sundarbans and its application for the treatment of chromium containing solution: Synthesis, adsorption isotherm, kinetics and thermodynamics study. Environmental Nanotechnology, Monitoring & Management, 12, 100276.

    Article  Google Scholar 

  • Majumder, A., Ramrakhiani, L., Mukherjee, D., Mishra, U., Halder, A., Mandal, A. K., & Ghosh, S. (2019). Green synthesis of iron oxide nanoparticles for arsenic remediation in water and sludge utilization. Clean Technologies and Environmental Policy, 21(4), 795–813.

    Article  CAS  Google Scholar 

  • Manikandan, G., & Ramasubbu, R. (2021). Biosynthesis of iron nanoparticles from Pleurotus florida and its antimicrobial activity against selected human pathogens. Indian Journal of Pharmaceutical Sciences, 83(1), 45–51.

    CAS  Google Scholar 

  • Manisalidis, I., Stavropoulou, E., Stavropoulos, A., & Bezirtzoglou, E. (2020). Environmental and health impacts of air pollution: A review. Frontiers in Public Health, 8, 14.

    Article  Google Scholar 

  • Mathur, P., Saini, S., Paul, E., Sharma, C., & Mehtani, P. (2021). Endophytic fungi mediated synthesis of iron nanoparticles: Characterization and application in methylene blue decolorization. Current Research in Green and Sustainable Chemistry, 4, 100053.

    Article  CAS  Google Scholar 

  • Michael, A., Singh, A., Roy, A., & Islam, M. (2022). Fungal-and algal-derived synthesis of various nanoparticles and their applications. Bioinorganic Chemistry and Applications, 2022, 3142674.

    Article  Google Scholar 

  • Mitra, S., Chakraborty, A. J., Tareq, A. M., Emran, T. B., Nainu, F., Khusro, A., Idris, A. M., Khandaker, M. U., Osman, H., Alhumaydhi, F. A., & Simal-Gandara, J. (2022). Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. Journal of King Saud University – Science, 34(3), 101865.

    Article  Google Scholar 

  • Mittal, S., & Roy, A. (2021). Fungus and plant-mediated synthesis of metallic nanoparticles and their application in degradation of dyes. In Photocatalytic degradation of dyes (pp. 287–308). Elsevier.

    Chapter  Google Scholar 

  • Mukherjee, P. (2017). Stenotrophomonas and microbacterium; mediated biogenesis of cooper, silver and iron nanoparticles – Proteomic insights and antibacterial properties versus biofilm formation. Journal of Cluster Science, 28, 331–358.

    Article  CAS  Google Scholar 

  • Mukherjee, A., Sarkar, D., & Sasmal, S. (2021). A review of green synthesis of metal nanoparticles using algae. Frontiers in Microbiology, 12, 693899.

    Article  Google Scholar 

  • Negi, S., & Singh, V. (2018). Algae: A potential source for nanoparticle synthesis. Journal of Applied and Natural Science, 10(4), 1134–1140.

    Article  CAS  Google Scholar 

  • Ohiagu, F. O., Chikezie, P. C., Ahaneku, C. C., & Chikezie, C. M. (2022). Human exposure to heavy metals: Toxicity mechanisms and health implications. Material Science & Engineering International Journal, 6(2), 78–87.

    Article  Google Scholar 

  • Okoye, C. O., Addey, C. I., Oderinde, O., Okoro, J. O., Uwamungu, J. Y., Ikechukwu, C. K., Okeke, E. S., Ejeromedoghene, O., & Odii, E. C. (2022). Toxic chemicals and persistent organic pollutants associated with micro-and nanoplastics pollution. Chemical Engineering Journal Advances, 11, 100310.

    Article  CAS  Google Scholar 

  • Pandit, C., Roy, A., Ghotekar, S., Khusro, A., Islam, M. N., Emran, T. B., et al. (2022). Biological agents for synthesis of nanoparticles and their applications. Journal of King Saud University-Science, 34, 101869.

    Article  Google Scholar 

  • Pansambal, S., Roy, A., Mohamed, H. E. A., Oza, R., Vu, C. M., Marzban, A., et al. (2022). Recent developments on magnetically separable ferrite-based nanomaterials for removal of environmental pollutants. Journal of Nanomaterials, 2022, 8560069.

    Article  Google Scholar 

  • Pasinszki, T., & Krebsz, M. (2020). Synthesis and application of zero-valent iron nanoparticles in water treatment, environmental remediation, catalysis, and their biological effects. Nanomaterials, 10(917), 1–37.

    Google Scholar 

  • Pozza, G. D., Deardorff, D., & Subir, M. (2022). Emerging environmental contaminants at the air/aqueous and biological soft interfaces. Environmental Science: Advances, 1, 430–437.

    Google Scholar 

  • Prasad, K. S., Gandhi, P., & Selvaraj, K. (2014). Synthesis of green nano iron particles (GnIP) and their application in adsorptive removal of As(III) and As(V) from aqueous solution. Applied Surface Science, 317, 1052–1059.

    Article  CAS  Google Scholar 

  • Prata, J. C. (2022). A One Health perspective on water contaminants. Water Emerging Contaminants & Nanoplastics, 1, 15–20.

    Article  Google Scholar 

  • Qin, J., Qian, L., Zhang, J., Zheng, Y., Shi, J., Shen, J., & Ou, C. (2021). Accelerated anaerobic biodecolorization of sulfonated azo dyes by magnetite nanoparticles as potential electron transfer mediators. Chemosphere, 263, 128048.

    Article  CAS  Google Scholar 

  • Radini, I. A., Hasan, N., Malik, M. A., & Khan, Z. (2018). Biosynthesis of iron nanoparticles using Trigonella foenum-graecum seed extract for photocatalytic methyl orange dye degradation and antibacterial applications. Journal of Photochemistry and Photobiology B: Biology, 183, 154–163.

    Article  CAS  Google Scholar 

  • Raina, S., Roy, A., & Bharadvaja, N. (2020). Degradation of dyes using biologically synthesized silver and copper nanoparticles. Environmental Nanotechnology, Monitoring & Management, 13, 100278.

    Article  Google Scholar 

  • Rajput, V. D., Minkina, T., Upadhyay, S. K., Kumari, A., Ranjan, A., Mandzhieva, S., Sushkova, S., Singh, R. K., & Verma, K. K. (2022). Nanotechnology in the restoration of polluted soil. Nanomaterials, 12, 769.

    Article  CAS  Google Scholar 

  • Ranjani, V. A., Rani, G. T., Sowjanya, M., Preethi, M., Srinivas, M., & Nikhil, M. (2022). Yeast mediated synthesis of iron oxide nano particles: Its characterization and evaluation of antibacterial activity. International Research Journal of Pharmacy and Medical Sciences, 5(5), 12–16.

    Google Scholar 

  • Rathore, A., & Devra, V. (2022). Experimental investigation on green synthesis of Fe NPs using Azadirachta indica leaves. Journal of Scientific Research, 14(1), 375–386.

    Article  CAS  Google Scholar 

  • Regnault, C., Usal, M., Veyrenc, S., Couturier, K., Batandier, C., Bulteau, A. L., Lejon, D., Sapin, A., Combourieu, B., Chetiveaux, M., Le May, C., Lafond, T., Raveton, M., & Reynaud, S. (2018). Unexpected metabolic disorders induced by endocrine disruptors in Xenopus tropicalis provide new lead for understanding amphibian decline. Proceedings of the National Academy of Sciences of the United States of America, 115(19), E4416–E4425.

    CAS  Google Scholar 

  • Roy, A., & Bharadvaja, N. (2019). Silver nanoparticle synthesis from Plumbago zeylanica and its dye degradation activity. Bioinspired, Biomimetic and Nanobiomaterials, 8(2), 130–140.

    Article  Google Scholar 

  • Roy, A., & Bharadvaja, N. (2021). Efficient removal of heavy metals from artificial wastewater using biochar. Environmental Nanotechnology, Monitoring & Management, 16, 100602.

    Article  CAS  Google Scholar 

  • Roy, A., Murthy, H. A., Ahmed, H. M., Islam, M. N., & Prasad, R. (2021a). Phytogenic synthesis of metal/metal oxide nanoparticles for degradation of dyes. https://doi.org/10.32604/jrm.2022.019410

  • Roy, A., Elzaki, A., Tirth, V., Kajoak, S., Osman, H., Algahtani, A., et al. (2021b). Biological synthesis of nanocatalysts and their applications. Catalysts, 11(12), 1494.

    Article  CAS  Google Scholar 

  • Roy, A., Sharma, A., Yadav, S., Jule, L. T., & Krishnaraj, R. (2021c). Nanomaterials for remediation of environmental pollutants. Bioinorganic Chemistry and Applications, 2021, 1764647.

    Article  Google Scholar 

  • Roy, A., Singh, V., Sharma, S., Ali, D., Azad, A. K., Kumar, G., & Emran, T. B. (2022a). Antibacterial and dye degradation activity of green synthesized iron nanoparticles. Journal of Nanomaterials, 2022, 1–6.

    Google Scholar 

  • Roy, A., Pandit, C., Gacem, A., Alqahtani, M. S., Bilal, M., Islam, S., et al. (2022b). Biologically derived gold nanoparticles and their applications. Bioinorganic Chemistry and Applications, 2022, 8184217.

    Article  Google Scholar 

  • Roy, A., Roy, M., Alghamdi, S., Dablool, A. S., Almakki, A. A., Ali, I. H., et al. (2022c). Role of microbes and nanomaterials in the removal of pesticides from wastewater. International Journal of Photoenergy, 2022, 2131583.

    Article  Google Scholar 

  • Safarkar, R., Rajaei, G. E., & Khalili-Arjagi, S. (2020). The study of antibacterial properties of iron oxide nanoparticles synthesized using the extract of lichen Ramalina sinensis. Asian Journal of Nanoscience and Materials, 3, 157–166.

    CAS  Google Scholar 

  • Saif, S., Tahir, A., & Chen, Y. (2016). Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials, 6, 209–234.

    Article  Google Scholar 

  • Salem, D. M. S. A., Ismail, M. M., & Tadros, H. R. Z. (2020). Evaluation of the antibiofilm activity of three seaweed species and their biosynthesized iron oxide nanoparticles (Fe3O4-NPs). The Egyptian Journal of Aquatic Research, 46(4), 333–339.

    Article  Google Scholar 

  • Schuster, S., & Su Yien Ting, A. (2021). Decolourisation of triphenylmethane dyes by biogenically synthesised iron nanoparticles from fungal extract. Mycology, 13, 56–67.

    Article  Google Scholar 

  • Shahwana, T., Sirriah, S. A., Nairat, M., Boyacı, E., Eroğlu, A. E., Scott, T. B., & Hallam, K. R. (2011). Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chemical Engineering Journal, 172(1), 258–266.

    Article  Google Scholar 

  • Shu, Y., Ji, B., Cui, B., Shi, Y., Wang, J., Hu, M., Luo, S., & Guo, D. (2020). Almond shell-derived, biochar-supported, nano-zero-valent iron composite for aqueous hexavalent chromium removal: Performance and mechanisms. Nanomaterials, 10, 198.

    Article  CAS  Google Scholar 

  • Singh, G., Kumar, V., & Dwivedi, S. K. (2022). Comparative investigation of Congo red and direct blue-1 adsorption on mycosynthesized iron nanoparticle. Journal of Cluster Science, 33(5), 1889–1905.

    Article  CAS  Google Scholar 

  • Sravanthi, K., Ayodhya, D., & Yadgiri Swamy, P. (2018). Green synthesis, characterization of biomaterial-supported zero-valent iron nanoparticles for contaminated water treatment. Journal of Analytical Science and Technology, 9(1), 1–11.

    Article  Google Scholar 

  • Subramaniyam, V., Subashchandrabose, S. R., Thavamani, P., Megharaj, M., Chen, Z., & Naidu, R. (2015). Chlorococcum sp. MM11—A novel phyco-nanofactory for the synthesis of iron nanoparticles. Journal of Applied Phycology, 27(5), 1861–1869.

    Article  CAS  Google Scholar 

  • Sulaymon, I. D., Mei, X., Yang, S., Chen, S., Zhang, Y., & Hopke, P. K. (2020). PM 2.5 in Abuja, Nigeria: Chemical characterization, source apportionment, temporal variations, transport pathways and the health risks assessment. Atmospheric Research, 237, 104833.

    Article  CAS  Google Scholar 

  • Taifa, S., Muhee, A., Bhat, R. A., Nabi, S. U., Roy, A., Rather, G. A., et al. (2022). Evaluation of therapeutic efficacy of copper nanoparticles in Staphylococcus aureus-Induced rat mastitis model. Journal of Nanomaterials, 2022, 7124114.

    Article  Google Scholar 

  • Ting, A. S. Y., & Ching, J. E. (2020). Biogenic synthesis of iron nanoparticles from apple peel extracts for decolorization of malachite green dye. Water, Air, & Soil Pollution, 231(6), 1–10.

    Article  Google Scholar 

  • Uddin, M. J., & Jeong, Y. K. (2021). Urban river pollution in Bangladesh during last 40 years: Potential public health and ecological risk, present policy, and future prospects toward smart water management. Heliyon, 7(2), e06107.

    Article  CAS  Google Scholar 

  • Vázquez-Guerrero, A., Cortés-Martínez, R., Alfaro-Cuevas-Villanueva, R., Rivera-Muñoz, E. M., & Huirache-Acuña, R. (2021). Cd (II) and Pb (II) adsorption using a composite obtained from moringa oleifera lam. Cellulose nanofibrils impregnated with iron nanoparticles. Water, 13(1), 89.

    Article  Google Scholar 

  • Velusamy, S., Roy, A., Sundaram, S., & Mallick, T. K. (2021). A review on heavy metal ions and containing dyes removal through graphene oxide-based adsorption strategies for textile wastewater treatment. The Chemical Record, 21(7), 1570–1610.

    Article  CAS  Google Scholar 

  • Verma, A., Roy, A., & Bharadvaja, N. (2020). Remediation of heavy metals using nanophytoremediation. In Advanced oxidation processes for effluent treatment plants (pp. 273–296). Elsevier.

    Google Scholar 

  • Wu, Z., Su, X., Lin, Z., Owens, G., & Chen, Z. (2019). Mechanism of As (V) removal by green synthesized iron nanoparticles. Journal of Hazardous Materials, 379, 120811.

    Article  CAS  Google Scholar 

  • **e, Q., & Ren, B. (2022). Pollution and risk assessment of heavy metals in rivers in the antimony capital of **kuangshan. Scientific Reports, 12, 14393.

    Article  CAS  Google Scholar 

  • Xu, W., Yang, T., Liu, S., Du, L., Chen, Q., Li, X., Dong, J., Zhang, Z., Lu, S., Gong, Y., Zhou, L., Liu, Y., & Tan, X. (2022). Insights into the synthesis, types and application of iron nanoparticles: The overlooked significance of environmental effects. Environment International, 158, 106980.

    Article  CAS  Google Scholar 

  • Yadav, V. K., Gnanamoorthy, G., Ali, D., Bera, S. P., Roy, A., Kumar, G., et al. (2022). Cytotoxicity, removal of Congo red dye in aqueous solution using synthesized amorphous iron oxide nanoparticles from incense sticks ash waste. Journal of Nanomaterials, 2022, 5949595.

    Article  Google Scholar 

  • Yang, Y., Sun, M., Zhou, J., Ma, J., & Komarneni, S. (2020). Degradation of orange II by Fe@Fe2O3 core shell nanomaterials assisted by NaHSO3. Chemosphere, 244, 125588.

    Article  CAS  Google Scholar 

  • Yoshino, T., Shimada, T., Ito, Y., Honda, T., Maeda, Y., Matsunaga, T., & Tanaka, T. (2018). Biosynthesis of thermoresponsive magnetic nanoparticles by magnetosome display system. Bioconjugate Chemistry, 29, 1756–1762.

    Article  CAS  Google Scholar 

  • Zakariya, N. A., Majeed, S., & Jusof, W. H. W. (2022). Investigation of antioxidant and antibacterial activity of iron oxide nanoparticles (IONPS) synthesized from the aqueous extract of Penicillium spp. Sensors International, 3, 100164.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda Maria Policarpo Tonelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Silva, C.S. et al. (2023). Green Iron Nanoparticles for Nanoremediation. In: Policarpo Tonelli, F.M., Roy, A., Ananda Murthy, H.C. (eds) Green Nanoremediation. Springer, Cham. https://doi.org/10.1007/978-3-031-30558-0_10

Download citation

Publish with us

Policies and ethics

Navigation