Nanomaterials for Therapeutic and Theranostic Applications: Concepts, Applications, and Future Perspectives

  • Chapter
  • First Online:
Nanomaterial-Based Drug Delivery Systems

Abstract

Due to the encouraging outcomes, the use of nanomaterials has increased manifold for both therapeutic and theranostic applications. Recently, different strategies have been employed for develo** the targeted drug deliveries and their imaging and quantifications. Nowadays, more stringent efforts have been taken by researchers to accompany both therapeutic and diagnostic modalities within a single nanoparticulate carrier system. These systems are therefore referred to as nanotheranostics. The major focus of the present chapter is to discuss the challenges in develo** nanotheranostic nanomedicines. Merits offered by theranostics over conventional therapies have also been discussed briefly. A brief overview of the investigations on the therapeutic and theranostic nanomedicines for potential pharmaceutical and biomedical applications has been tabulated in the present piece of literature. Emerging theranostic nanocarriers have also been briefly discussed at the end of this chapter. Authors finally discuss the hurdles in the development of nanotheranostics and future opportunities therein. In authors’ opinion, the potential merits offered by the nanotheranostics or engineered nanotheranostics could improve personalized care in the treatment of chronic diseases, provided the toxicity and clinical aspects are addressed, in detail, before their entry into the commercial market as a potential delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

AIDS:

Acquired immunodeficiency syndrome

AIE:

Aggregation-induced emission

API:

Active pharmaceutical ingredients

Au:

Gold

Aβ:

Amyloid-β

BBB:

Blood–brain barrier

CLSM:

Confocal laser scanning microscopy

CMD:

Carboxymethyl dextran

CNTs:

Carbon nanotubes

CT:

Computed tomography

CTAB:

N-cetyltrimethylammonium bromide

DOX:

Doxorubicin

GNPs:

Gold nanoparticles

GO:

Graphene oxide

HAS:

Human serum albumin

IgG:

Immunoglobulin G

LF-AMF:

Low frequency alternating magnetic field

MLs:

Magnetoliposomes

MnO2:

Manganese dioxide

MRI:

Magnetic resonance imaging

MSNPs:

Mesoporous silica nanoparticles

MWCNTs:

Multi-walled carbon nanotubes

NCs:

Nanocrystals

NIH:

National Institute of Health

NIR:

Near-infrared region

NPs:

Nanoparticles

PDI:

Photodynamic inactivation

PDT:

Photodynamic therapy

PEG:

Polyethylene glycol

PET:

Positron emission tomography

PLGA:

Poly(lactide-co-glycolic acid)

PPT:

Plasmonic photothermal therapy

QDs:

Quantum dots

RBC:

Red blood cells

RGO:

Reduced graphene oxide

ROS:

Reactive oxygen species

RTX:

Rituximab

SPIONs:

Superparamagnetic iron oxide nanoparticles

SWCNTs:

Single-walled carbon nanotubes

UCNPs:

Upconversion nanoparticles

VEGF:

Vascular endothelial growth factor

ZnO:

Zinc oxide

References

  1. Pardeshi CV, Kulkarni AD, Sonawane RO, Belgamwar VS, Chaudhari PJ, Surana SJ. Mucoadhesive nanoparticles: a roadmap to encounter the challenge of rapid nasal mucociliary clearance. Indian J Pharm Educ Res. 2019;2:S17–27.

    Article  Google Scholar 

  2. Patra CR, Bhattacharya R, Mukhopadyay D, Mukherjee P. Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Adv Drug Deliv Rev. 2010;62(3):346–61.

    Article  CAS  PubMed  Google Scholar 

  3. Kaur IP, Kakkar V, Deol PK, Yadav M, Singh M, Sharma I. Issues and concerns in nanotech product development and its commercialization. J Control Release. 2014;193:51–62.

    Article  CAS  PubMed  Google Scholar 

  4. Available online at http://www.nano.gov/nanotech-101/what/definition

  5. Bawa R. Nanopharmaceuticals. Eur J Nanomed. 2010;3:34–9.

    Article  Google Scholar 

  6. Webster TJ. Nanomedicine: What’s in a definition? Int J Nanomedicine. 2006;1:115–6.

    Article  PubMed  PubMed Central  Google Scholar 

  7. National Institutes of Health. National Institute of health roadmap for medical research: nanomedicine. 2006. Available online at: http://nihroadmap.nih.gov/nanomedicine/.

  8. National Nanotechnology Initiative. Available online at http://www.nano.gov

  9. Siddhardha B, Parasuraman P. Theranostics application of nanomedicine in cancer detection and treatment. In: Grumezescu AM (Ed.). Nanomaterials for drug delivery and therapy. 2019, pp. 59–89.

    Google Scholar 

  10. Figueiredo P, Bauleth-Ramos T, Hirvonen J, Sarmento B, Santos HA. The emerging role of multifunctional Theranostic materials in cancer nanomedicine. In: Conde J, editor. Handbook of nanomaterials for cancer Theranostics. Elsevier; 2018. p. 1–31.

    Google Scholar 

  11. **e J, Lee S, Chen X. Nanoparticle-based theranostic agents. Adv Drug Deliv Rev. 2010;62:1064–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim TH, Lee S, Chen X. Nanotheranostics for personalized medicine. Expert Rev Mol Diagn. 2013;13:257–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mura S, Couvreur P. Nanotheranostics for personalized medicine. Adv Drug Deliv Rev. 2012;64:1394–416.

    Article  CAS  PubMed  Google Scholar 

  14. Wang LS, Chuang MC, Ho JAA. Nanotheranostics a review of recent publications. Int J Nanomedicine. 2012;7:4679–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wagner V, Dullaart A, Bock AK, Zweck A. The emerging nanomedicine landscape. Nat Biotechnol. 2006;24:1211–7.

    Article  CAS  PubMed  Google Scholar 

  16. Lammers T, Hennink WE, Storm G. Tumour-targeted nanomedicines: principles and practice. Br J Cancer. 2008;99:392–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lammers T. Improving the efficacy of combined modality anticancer therapy using HPMA copolymer-based nanomedicine formulations. Adv Drug Deliv Rev. 2010;62:203–30.

    Article  CAS  PubMed  Google Scholar 

  18. Rizzo LY, Theek B, Storm G, Kiessling F, Lammers T. Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications. Curr Opin Biotechnol. 2013;24:1159–66.

    Article  CAS  PubMed  Google Scholar 

  19. Janib SM, Moses AS, MacKay JA. Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev. 2010;62:1052–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen X, Gambhir SS, Cheon J. Theranostic nanomedicine. Acc Chem Res. 2011;44:841.

    Article  CAS  PubMed  Google Scholar 

  21. Lammers T, Aime S, Hennink WE, Storm G, Kiessling F. Theranostic nanomedicine. Acc Chem Res. 2011;44:1029–38.

    Article  CAS  PubMed  Google Scholar 

  22. Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev. 2013;65:71–9.

    Article  CAS  PubMed  Google Scholar 

  23. Sumer B, Gao J. Theranostic nanomedicine for cancer. Nanomedicine. 2008;3:137–40.

    Article  PubMed  Google Scholar 

  24. Lammers T, Kiessling G, Hennick WE, Storm G. Nanotheranostics and image-guided drug delivery: current concepts and future directions. Mol Pharm. 2010;7:1899–912.

    Article  CAS  PubMed  Google Scholar 

  25. Duncan R, Gaspar R. Nanomedicine(s) under the microscope. Mol Pharm. 2011;8:2101–41.

    Article  CAS  PubMed  Google Scholar 

  26. Idee JM, Louguet S, Ballet S, Corot C. Theranostics and contrast-agents for medical imaging: a pharmaceutical company viewpoint. Quant Imaging Med Surg. 2013;3:292–7.

    PubMed  PubMed Central  Google Scholar 

  27. Rizzo LY, Theek B, Storm G, Kiessling F. Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications. Curr Opin Biotechnol. 2013;24:1–13.

    Article  Google Scholar 

  28. Cui H, Wang J. Progress in the development of nanotheranostic systems. Theranostics. 2016;6:915–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Muthu MS, Leong DT, Mei L, Feng SS. Nanotheranostics - application and further development of nanomedicine strategies for advanced theranostics. Theranostics. 2014;4(6):660–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dykman LA, Khlebtsov NG. Multifunctional gold-based nanocomposites for theranostics. Biomaterials. 2016;108:13–34.

    Article  CAS  PubMed  Google Scholar 

  31. Kiran P, Khan A, Neekhra S, Kumar P, Singh B, Pallod S, Dias F, Srivastava R. Evolution towards Theranostics: basic principles. In: Borse V, Chandra P, Srivastava R, editors. BioSensing, Theranostics, and medical devices. Singapore: Springer; 2022.

    Google Scholar 

  32. Zhang C, Wan X, Zheng X, Shao X, Liu Q, Zhang Q, Qian Y. Dual-functional nanoparticles targeting amyloid plaques in the brains of Alzheimer’s disease mice. Biomaterials. 2014;35(1):456–65.

    Article  CAS  PubMed  Google Scholar 

  33. Gupta MK, Lee Y, Boire TC, Lee JB, Kim WS, Sung HJ. Recent strategies to design vascular theranostic nanoparticles. Nano. 2017;1(2):166–77.

    Google Scholar 

  34. Yang T, Zhao P, Rong Z, Li B, Xue H, You J, He C, Li W, He X, Lee RJ, Ma X, **ang G. Anti-tumor efficiency of lipid-coated cisplatin nanoparticles co-loaded with MicroRNA-375. Theranostics. 2016;6(1):142–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang T, Wang D, Yu H, Wang M, Liu J, Feng B, Zhou F, Yin Q, Zhang Z, Huang Y, Li Y. Intracellularly acid-switchable multifunctional micelles for combinational photo/chemotherapy of the drug-resistant tumor. ACS Nano. 2016;10(3):3496–508.

    Article  CAS  PubMed  Google Scholar 

  36. He X, **ong LH, Zhao Z, Wang Z, Luo L, Lam JWY, Kwok RTK, Tang BZ. AIE-based theranostic systems for detection and killing of pathogens. Theranostics. 2019;9(11):3223–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Acharya G, Mitra AK, Cholkar K. Nanosystems for diagnostic imaging,biodetectors, and biosensors. In: Mitra AK, Cholkar K, Mandal A, editors. Emerging nanotechnologies for diagnostics, drug delivery and medical devices. New York: Elsevier; 2017.

    Google Scholar 

  38. Kim H, Chung K, Lee S, Kim DH, Lee H. Near-infrared light-responsive nanomaterials for cancer theranostics. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8(1):23–45.

    Article  CAS  PubMed  Google Scholar 

  39. García Calavia P, Bruce G, Pérez-García L, Russell DA. Photosensitiser-gold nanoparticle conjugates for photodynamic therapy of cancer. Photochem Photobiol Sci. 2018;17(11):1534–52.

    Article  PubMed  Google Scholar 

  40. Kumawat MK, et al. Preparation of graphene oxide-graphene quantum dots hybrid and its application in cancer theranostics. Mater Sci Eng C. 2019;103:109774.

    Article  CAS  Google Scholar 

  41. Sun Z, Huang P, Tong G, Li J, ** A, Rong P, Zhu L, Nie G, Cao F, Chen X. VEGF-loaded graphene oxide as theranostics for multi-modality imagingmonitored targeting therapeutic angiogenesis of ischemic muscle. Nanoscale. 2013;5(15):6857–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ben-Akiva E, Meyer RA, Yu H, Smith JT, Pardoll DM, Green JJ. Biomimetic anisotropic polymeric nanoparticles coated with red blood cell membranes for enhanced circulation and toxin removal. Sci Adv. 2020;6(16):eaay9035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T, Katayama Y, Niidome Y. PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release. 2006;114(3):343–7.

    Article  CAS  PubMed  Google Scholar 

  44. Jiang J, Oberdörster G, Elder A, Gelein R, Mercer P, Biswas P. Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology. 2008;2(1):33–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Forest V, Leclerc L, Hochepied JF, Trouvé A, Sarry G, Pourchez J. Impact of cerium oxide nanoparticles shape on their in vitro cellular toxicity. Toxicol In Vitro. 2017;38:136–41.

    Article  CAS  PubMed  Google Scholar 

  46. Lee JH, Ju JE, Kim BI, Pak PJ, Choi EK, Lee HS, Chung N. Rod-shaped iron oxide nanoparticles are more toxic than sphere-shaped nanoparticles to murine macrophage cells. Environ Toxicol Chem. 2014;33(12):2759–66.

    Article  CAS  PubMed  Google Scholar 

  47. Baek M, Kim MK, Cho HJ, Lee JA, Yu J, Chung HE, Choi SJ. Factors influencing the cytotoxicity of zinc oxide nanoparticles: particle size and surface charge. J Phys Conf Ser. 2011;304:012044.

    Article  Google Scholar 

  48. Kai W, **aojun X, **ming P, Zhenqing H, Qiqing Z. Cytotoxic effects and the mechanism of three types of magnetic nanoparticles on human hepatoma BEL-7402 cells. Nanoscale Res Lett. 2011;6(1):480.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Karlsson HL, Cronholm P, Gustafsson J, Möller L. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol. 2008;21(9):1726–32.

    Article  CAS  PubMed  Google Scholar 

  50. Phan HT, Haes AJ. What does nanoparticle stability mean? J Phys Chem C Nanomater Interfaces. 2019;123(27):16495–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cao G. Nanostructures and nanomaterials. 2nd ed. London: World Scientific; 2011.

    Book  Google Scholar 

  52. Colombo AP, Briançon S, Lieto J, Fessi H. Project, design, and use of a pilot plant for nanocapsule production. Drug Dev Ind Pharm. 2001;27(10):1063–72.

    Article  CAS  PubMed  Google Scholar 

  53. Bosetti R, Jones SL. Cost-effectiveness of nanomedicine: estimating the real size of nano-costs. Nanomedicine (Lond). 2019;14(11):1367–70.

    Article  CAS  PubMed  Google Scholar 

  54. Sharma M, Dube T, Chibh S, Kour A, Mishra J, Panda JJ. Nanotheranostics, a future remedy of neurological disorders. Expert Opin Drug Deliv. 2019;16(2):113–28.

    Article  CAS  PubMed  Google Scholar 

  55. Guo H, Chen W, Sun X, Liu YN, Li J, Wang J. Theranostic magnetoliposomes coated by carboxymethyl dextran with controlled release by low-frequency alternating magnetic field. Carbohydr Polym. 2015;118:209–17.

    Article  CAS  PubMed  Google Scholar 

  56. Sonali, Singh RP, Singh N, Sharma G, et al. Transferrin liposomes of docetaxel for brain-targeted cancer applications: formulation and brain theranostics. Drug Deliv. 2016;23:1261–71.

    Article  CAS  PubMed  Google Scholar 

  57. Bernal GM, LaRiviere MJ, Mansour N, et al. Convection-enhanced delivery and in vivo imaging of polymeric nanoparticles for the treatment of malignant glioma. Nanomedicine. 2014;10:149–57.

    Article  CAS  PubMed  Google Scholar 

  58. Li D, Tang X, Pulli B, Lin C, Zhao P, Cheng J, Lv Z, Yuan X, Luo Q, Cai H, Ye M. Theranostic nanoparticles based on bioreducible polyethylenimine-coated iron oxide for reduction-responsive gene delivery and magnetic resonance imaging. Int J Nanomedicine. 2014;9:3347–61.

    PubMed  PubMed Central  Google Scholar 

  59. Vaughan HJ, Zamboni CG, Hassan LF, Radant NP, Jacob D, Mease RC, Minn I, Tzeng SY, Gabrielson KL, Bhardwaj P, Guo X, Francisco D, Pomper MG, Green JJ. Polymeric nanoparticles for dual-targeted theranostic gene delivery to hepatocellular carcinoma. Sci Adv. 2022;8(29):eabo6406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shi M, Wang S, Zheng S, Hou P, Dong L, He M, Wu C, Zhang X, Zuo F, Xu K, Li J. Activatable MRI-monitoring gene delivery for the theranostic of renal carcinoma. Colloids Surf B Biointerfaces. 2020;185:110625.

    Article  CAS  PubMed  Google Scholar 

  61. Santra S, Kaittanis C, Perez JM. Cytochrome C encapsulating theranostic nanoparticles: a novel bifunctional system for targeted delivery of therapeutic membrane-impermeable proteins to tumors and imaging of cancer therapy. Mol Pharm. 2010;7:1209–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cheng R, Meng F, Ma S, Xu H, Liu H, **g X, Zhong Z. Reduction and temperature dual-responsive crosslinked polymersomes for targeted intracellular protein delivery. J Mater Chem. 2011;21:19013–20.

    Article  CAS  Google Scholar 

  63. Xu H, Meng F, Zhong Z. Reversibly crosslinked temperature-responsive nano-sized polymersomes: synthesis and triggered drug release. J Mater Chem. 2009;19:4183–90.

    Article  CAS  Google Scholar 

  64. Skaat H, Corem-Slakmon E, Grinberg I, et al. Antibody-conjugated, dual-modal, near-infrared fluorescent iron oxide nanoparticles for antiamyloidgenic activity and specific detection of amyloid-β fibrils. Int J Nanomedicine. 2013;8:4063–76.

    PubMed  PubMed Central  Google Scholar 

  65. Saesoo S, Sathornsumetee S, Anekwiang P, et al. Characterization of liposome-containing SPIONs conjugated with anti-CD20 developed as a novel theranostic agent for central nervous system lymphoma. Colloids Surf B Biointerfaces. 2018;161:497–507.

    Article  CAS  PubMed  Google Scholar 

  66. Chen ZL, Huang M, Wang XR, Fu J, Han M, Shen YQ, **a Z, Gao JQ. Transferrin-modified liposome promotes α-mangostin to penetrate the blood-brain barrier. Nanomedicine. 2016;12(2):421–30.

    Article  CAS  PubMed  Google Scholar 

  67. Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release. 2015;200:138–57.

    Article  CAS  PubMed  Google Scholar 

  68. Chen F, Ehlerding EB, Cai W. Theranostic nanoparticles. J Nucl Med. 2014;55:1919–22.

    Article  CAS  PubMed  Google Scholar 

  69. Ma X, Zhao Y, Liang XJ. Theranostic nanoparticles engineered for clinic and pharmaceutics. Acc Chem Res. 2011;44(10):1114–22.

    Article  CAS  PubMed  Google Scholar 

  70. Shubayev VI, Pisanic TR II, ** S. Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev. 2009;61(6):467–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ozdemir V, Williams-Jones B, Glatt SJ, Tsuang MT, Lohr JB, Reist C. Shifting emphasis from pharmacogenomics to theragnostics. Nat Biotechnol. 2006;24(8):942–9460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Patitsa M, Karathanou K, Kanaki Z, Tzioga L, Pippa N, Demetzos C, Verganelakis DA, Cournia Z, Klinakis A. Magnetic nanoparticles coated with polyarabic acid demonstrate enhanced drug delivery and imaging properties for cancer theranostic applications. Sci Rep. 2017;7(1):775.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Tripathi SK, Kaur G, Khurana RK, Kapoor S, Singh B. Quantum dots and their potential role in cancer theranostics. Crit Rev Ther Drug Carrier Syst. 2015;32(6):461–502.

    Article  CAS  PubMed  Google Scholar 

  74. Ho YP, Leong KW. Quantum dot-based theranostics. Nanoscale. 2010;2(1):60–8.

    Article  CAS  PubMed  Google Scholar 

  75. Chen G, Qiu H, Prasad PN, Chen X. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem Rev. 2014;114(10):5161–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rafique R, Kailasa SK, Park TJ. Recent advances of upconversion nanoparticles in theranostics and bioimaging applications. Trends Anal Chem. 2019;120:115646.

    Article  Google Scholar 

  77. Guo J, Rahme K, He Y, Li LL, Holmes JD, O’Driscoll CM. Gold nanoparticles enlighten the future of cancer theranostics. Int J Nanomedicine. 2017;12:6131–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Akhter S, Ahmad MZ, Ahmad FJ, Storm G, Kok RJ. Gold nanoparticles in theranostic oncology: current state-of-the-art. Expert Opin Drug Deliv. 2012;9(10):1225–43.

    Article  CAS  PubMed  Google Scholar 

  79. Yang K, Feng L, Shi X, Liu Z. Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev. 2013;42(2):530–47.

    Article  CAS  PubMed  Google Scholar 

  80. Orecchioni M, Cabizza R, Bianco A, Delogu LG. Graphene as cancer theranostic tool: progress and future challenges. Theranostics. 2015;5(7):710–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kandasamy G, Maity D. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int J Pharm. 2015;496(2):191–218.

    Article  CAS  PubMed  Google Scholar 

  82. Santhosh PB, Ulrih NP. Multifunctional superparamagnetic iron oxide nanoparticles: promising tools in cancer theranostics. Cancer Lett. 2013;336(1):8–17.

    Article  CAS  PubMed  Google Scholar 

  83. Baez A, Vallet-RegĂ­ M. Mesoporous silica nanoparticles as theranostic antitumoral nanomedicines. Pharmaceutics. 2020;12(10):957.

    Article  Google Scholar 

  84. Chen F, Hableel G, Zhao ER, Jokerst JV. Multifunctional nanomedicine with silica: role of silica in nanoparticles for theranostic, imaging, and drug monitoring. J Colloid Interface Sci. 2018;521:261–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Xu Z, Ma X, Gao Y-E, Hou M, Xue P, Li CM, Kang Y. Multifunctional silica nanoparticles as a promising theranostic platform for biomedical applications. Mater Chem Front. 2017;1:1257–72.

    Article  CAS  Google Scholar 

  86. Feng Y, Panwar N, Tng DJH, T** SC, Wang K, Yong K-T. The application of mesoporous silica nanoparticle family in cancer theranostics. Coord Chem Rev. 2016;319:86–109.

    Article  CAS  Google Scholar 

  87. Mostafavi E, Iravani S, Varma RS, Khatami M, Rahbarizadeh F. Eco-friendly synthesis of carbon nanotubes and their cancer theranostic applications. Mater Adv. 2022;3(12):4765–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tang L, **ao Q, Mei Y, et al. Insights on functionalized carbon nanotubes for cancer theranostics. J Nanobiotechnol. 2021;19(1):423.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrakantsing V. Pardeshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pardeshi, C.V., Souto, E.B. (2023). Nanomaterials for Therapeutic and Theranostic Applications: Concepts, Applications, and Future Perspectives. In: Pardeshi, C.V. (eds) Nanomaterial-Based Drug Delivery Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-30529-0_1

Download citation

Publish with us

Policies and ethics

Navigation