Nutrient Erosion and Hypoxia of Aquatic Ecosystems

  • Chapter
  • First Online:
Soil Conservation and Management
  • 419 Accesses

Abstract

Concerns about the eutrophication and contamination of water resources are growing worldwide (Fig. 16.1). Studies from USA, India, China, Europe, and other regions indicate that non-point source pollution is an ongoing threat to the quality of aquatic ecosystems (Rabalais and Turner 2019; Pericherla et al. 2020; Huang et al. 2021; Ramos et al. 2022). For example, in China, about 60% of groundwater is polluted, particularly in rural communities (Zhang et al. 2015). Agricultural pollutants include sediment, N, P, pesticides, and others. In the USA, about 46% of rivers and streams have high amounts of sediment, N, and P mainly due to soil erosion, which can be a health threat to human, wildlife, livestock, and aquatic flora and fauna (USEPA 2022). Excess of nutrients such as NO3 in drinking water can trigger major health problems (Huang et al. 2021).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 139.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Blanco-Canqui H (2018) Cover crops and water quality. Agron J 110:1633–1647

    Article  CAS  Google Scholar 

  • Blanco-Canqui H, Hergert GW, Nielsen RA (2015) Cattle manure application reduces soil's susceptibility to compaction and increases water retention after 71 years. Soil Sci Soc Am J 79:212–223

    Article  CAS  Google Scholar 

  • Bu X, Xue J, Zhao C, Wu Y, Han F, Zhu L (2016) Sediment and nutrient removal by integrated tree-grass riparian buffers in Taihu Lake watershed, eastern China. J Soil Water Conserv 71(2):129–136

    Article  Google Scholar 

  • Carver RE, Nelson NO, Roozeboom KL, Kluitenberg GJ, Tomlinson PJ, Kang Q, Abel DS (2022) Cover crop and phosphorus fertilizer management impacts on surface water quality from a no-till corn-soybean rotation. J Environ Manag 301:113818

    Article  CAS  Google Scholar 

  • Dahl Thomas E (1990) Wetlands losses in the United States 1780’s to 1980’s. U.S. Department of the Interior, Fish and Wildlife Service, Washington, DC, Jamestown, ND: Northern Prairie Wildlife Research Center Online. http://www.npwrc.usgs.gov/resource/wetlands/wetloss/index.htm. Cited 14 March 2008

  • Davidson NC, Finlayson CM (2018) Extent, regional distribution and changes in area of different classes of wetland. Mar Freshw Res 69:1525–1533

    Article  Google Scholar 

  • Dutta J, Singh PP (2021) Air pollutants and acid precipitation: impact on ecology and human health. In: Dutta J, Goswami S, Mitra A (eds) Multidimensional approaches to impacts of changing environment on human health. CRC Press, New York

    Chapter  Google Scholar 

  • Elias D, Wang L, Jacinthe P-A (2018) A meta-analysis of pesticide loss in runoff under conventional tillage and no-till management. Environ Monit Assess 190:79

    Article  PubMed  Google Scholar 

  • Fan D, Mao Y, Xu L, Wang W (2020) Effects of livestock and poultry breeding pollution on health risks: evidence from a hog breeding case in rural China. Chinese J Popul Resour Environ 18(4):342–349

    Article  Google Scholar 

  • Fennel K, Testa JM (2019) Biogeochemical controls on coastal hypoxia. Annu Rev Mar Sci 11:105–130. https://doi.org/10.1146/annurev-marine-010318-095138

    Article  Google Scholar 

  • Ghidey F, Blanchard PE, Lerch RN et al (2005) Measurement and simulation of herbicide transport from the corn phase of three crop** systems. J Soil Water Conserv 60:260–273

    Google Scholar 

  • Glossary of Science Terms (2008) Soil Science Society of America. https://www.soils.org/publications/soils-glossary/

  • Grande JD, Karthikeyan KG, Miller PS et al (2005) Corn residue level and manure application timing effects on phosphorus losses in runoff. J Environ Qual 34:1620–1631

    Article  CAS  PubMed  Google Scholar 

  • Haque SE (2021) How effective are existing phosphorus management strategies in mitigating surface water quality problems in the U.S? Sustainability 13:6565

    Article  CAS  Google Scholar 

  • He M, Xu Z, Hou D et al (2022) Waste-derived biochar for water pollution control and sustainable development. Nat Rev Earth Environ 3:444–460

    Article  CAS  Google Scholar 

  • Huang J, Zhang Y, Bing H, Peng J, Dong F, Gao J, Arhonditsis GB (2021) Characterizing the river water quality in China: recent progress and on-going challenges. Water Res 201:117309

    Article  CAS  PubMed  Google Scholar 

  • IFA (International Fertilizer Industry Association) (2022) Total fertilizer consumption statistics by region. http://www.fertilizer.org. Accessed Nov 2022

  • Kemmerling LR, Rutkoski CE, Evans SE, Helms JA, Cordova-Ortiz ES, Smith JD, Vázquez JA, Custodio CV, Haddad NM (2022) Prairie strips and lower land use intensity increase biodiversity and ecosystem services. Front Ecol Evol 10

    Google Scholar 

  • Kleinman PJA, Osmond DL, Christianson LE, Flaten DN, Ippolito JA, Jarvie HP, Kaye JP, King KW, Leytem AB, McGrath JM, Nelson NO, Shober AL, Smith DR, Staver KW, Sharpley AN (2022) Addressing conservation practice limitations and trade-offs for reducing phosphorus loss from agricultural fields. Agric Environ Lett 7

    Google Scholar 

  • Krutz LJ, Senseman SA, Zablotowicz RM et al (2005) Reducing herbicide runoff from agricultural fields with vegetative filter strips: a review. Weed Sci 53:353–367

    Article  CAS  Google Scholar 

  • Li T, Wang Z, Wang C, Huang J, Feng Y, Shen W, Zhou M, Yang L (2022) Ammonia volatilization mitigation in crop farming: a review of fertilizer amendment technologies and mechanism. Chemosphere 303:134944

    Article  CAS  PubMed  Google Scholar 

  • Liang L, ** F, Tan W et al (2021) Review of organic and inorganic pollutants removal by biochar and biochar-based composites. Biochar 3:255–281

    Article  CAS  Google Scholar 

  • Liu S, Zhao L, **ao C, Fan W, Cai Y, Pan Y, Chen Y (2020) Review of artificial downwelling for mitigating hypoxia in coastal waters. Water 12:2846

    Article  CAS  Google Scholar 

  • Martínez-Espinosa C, Sauvage S, Al Bitar A, Green PA, Vörösmarty CJ, Sánchez-Pére JM (2021) Denitrification in wetlands: a review towards a quantification at global scale. Sci Total Environ 754(2021):142398

    Article  PubMed  Google Scholar 

  • Martins WBR, Lima MDR, Junior UDOB, Amorim LSVB, de Assis Oliveira F, Schwartz G (2020) Ecological methods and indicators for recovering and monitoring ecosystems after mining: a global literature review. Ecol Eng 145

    Google Scholar 

  • Mitsch WJ, Day JW (2006) Restoration of wetlands in the Mississippi-Ohio-Missouri (MOM) river basin: experience and needed research. Ecol Eng 26:55–69

    Article  Google Scholar 

  • Mitsch WJ, Day JW, Zhang L et al (2005) Nitrate–nitrogen retention in wetlands in the Mississippi River basin. Ecol Eng 24:267–278

    Article  Google Scholar 

  • Moomaw WR, Chmura GL, Davies GT et al (2018) Wetlands in a changing climate: science, policy and management. Wetlands 38:183–205

    Article  Google Scholar 

  • NOAA (National Oceanic and Atmospheric Administration) (2022) Hypoxia in the Gulf of Mexico. http://oceanservice.noaa.gov. Accessed Feb 2023

  • Nouri A, Lukas S, Singh S, Singh S, Machado S (2022) When do cover crops reduce nitrate leaching? A global meta-analysis. Glob Chang Biol 28:4736–4749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Parsons JE, Thomas DL, Huffman RL (2004) Agricultural non-point source water quality models: their use and application. Southern Coop. Series Bull. #398. North Carolina State University. http://www3.bae.ncsu.edu/Regional-Bulletins/Modeling-Bulletin/modeling-bulletin.html

  • Pericherla S, Karnena MK, Vara S (2020) A review on impacts of agricultural runoff on freshwater resources. Int J Emerg Technol 11:829–833

    CAS  Google Scholar 

  • Porter PA, Mitchell RB, Moore KJ (2015) Reducing hypoxia in the Gulf of Mexico: reimagining a more resilient agricultural landscape in the Mississippi River watershed. J Soil Water Conserv 70(2015):63A–68A

    Article  Google Scholar 

  • Rabalais NN, Turner RE (2019) Gulf of Mexico hypoxia: past, present, and future. Bull Limnol Oceanogr 28:117–124. https://doi.org/10.1002/lob.10351

    Article  Google Scholar 

  • Ramos MCI, Lizaga L, Gaspar AN (2022) The impacts of exceptional rainfall on phosphorus mobilisation in a mountain agroforestry catchment (NE, Spain). Catena 216:106407

    Article  CAS  Google Scholar 

  • Ranaivoson L, Naudin K, Ripoche A et al (2017) Agro-ecological functions of crop residues under conservation agriculture. A review. Agron Sustain Dev 37:26

    Article  Google Scholar 

  • Robertson DM, Saad DA, Benoy GA, Vouk I, Schwarz GE, Laitta MT (2019) Phosphorus and nitrogen transport in the binational Great Lakes basin estimated using SPARROW watershed models. JAWRA J Am Water Resour Assoc 2019. https://doi.org/10.1111/1752-1688.12792

  • Selim HM, Zhou L, Zhu H (2003) Herbicide retention in soil as affected by sugarcane mulch residue. J Environ Qual 32:1445–1454

    Article  CAS  PubMed  Google Scholar 

  • Sheoran AS, Sheoran V (2006) Heavy metal removal mechanism of acid mine drainage in wetlands: a critical review. Min Eng 19:105–116

    Article  CAS  Google Scholar 

  • Shipitalo MJ, Dick WA, Edwards WM (2000) Conservation tillage and macropore factors that affect water movement and the fate of chemicals. Soil Tillage Res 53:167–183

    Article  Google Scholar 

  • USEPA (2022) Gulf Hypoxia Program. http://www.epa.gov

  • Vlasov DV, Kasimov NS, Eremina ID, Shinkareva GL, Chubarova NE (2020) Partitioning and solubilities of metals and metalloids in spring rains in Moscow megacity. Atmos Pollut Res 12:255–277

    Article  Google Scholar 

  • Wang ZH, Li SX (2019) Nitrate N loss by leaching and surface runoff in agricultural land: a global issue (a review). Adv Agron 156:159–217

    Article  Google Scholar 

  • Wang E, Cruse RM, Sharma-Acharya B, Herzmann DE, Gelder BK, James DE et al (2020) Strategic switchgrass (Panicum virgatum) production within row crop** systems: regional-scale assessment of soil erosion loss and water runoff impacts. GCB Bioenergy 12:955–967

    Article  CAS  Google Scholar 

  • Yuan YP, Koropeckyj-Cox L (2022) 2022. SWAT model application for evaluating agricultural conservation practice effectiveness in reducing phosphorous loss from the Western Lake Erie Basin. J Environ Manag 302(2):114000

    Article  CAS  Google Scholar 

  • Zedler JB, Kercher S (2005) Wetland resources: status, trends, ecosystem services, and restorability. Annu Rev Environ Resour 30:39–74

    Article  Google Scholar 

  • Zhang X-N, Guo Q-P, Shen X-X, Yu S-W, Qiu G-Y (2015) Water quality, agriculture and food safety in China: current situation, trends, interdependencies, and management. J Integr Agri 14:2365–2379

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blanco, H., Lal, R. (2023). Nutrient Erosion and Hypoxia of Aquatic Ecosystems. In: Soil Conservation and Management. Springer, Cham. https://doi.org/10.1007/978-3-031-30341-8_16

Download citation

Publish with us

Policies and ethics

Navigation